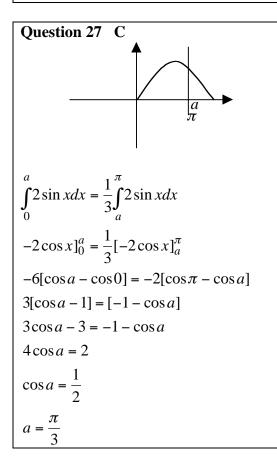
Question 1 D	Question 2 D
$x-2 \neq 0$	Interchange <i>x</i> and <i>y</i>
\therefore Vertical asymptote at $x = 2$	$x = \frac{1}{2}e^{y+1}$
$x-2\overline{)x-1}$	
(x-2)x-1	$2x = e^{y+1}$ y+1 = log _e (2x)
<i>x</i> – 2	$y+1 = \log_e(2x)$
1	$y = \log_e(2x) - 1$
$\frac{x-2}{1} f(x) = 1 + \frac{1}{x-2}$	
\therefore Horizontal asymptote at $y = 1$	
Question 3 A	Question 4 B
f(x) represents a semi circle with centre (0,0) and radius 2. This semi circle is an increasing	A maximum value occurs when $\cos \frac{\pi(t-1)}{4} = -1$
function for	So $\frac{\pi(t-1)}{4} = \pi, 3\pi, 5\pi$
$-2 \le x \le 0$	
∴[-2,0]	$\pi(t-1) = 4\pi, 12\pi, 20\pi$
	(t-1) = 4, 12, 20
	t = 5, 13, 21 A maximum value occurs when $t = 5$
Question 5 D	Question 6 E
$\sin 2\theta = -\cos 2\theta$	This graph has an amplitude of 4 and is not
$\tan 2\theta = -1$	translated up or down.
$2\theta = \pi - \frac{\pi}{4}, 2\pi - \frac{\pi}{4}, 3\pi - \frac{\pi}{4}, 4\pi - \frac{\pi}{4}$ $0 \le \theta \le 2\pi \qquad 0 \le 2\theta \le 4\pi$ $2\theta = \frac{3\pi}{4}, \frac{7\pi}{4}, \frac{11\pi}{4}, \frac{15\pi}{4}$ $\theta = \frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$ Difference between largest and smallest	
solution is	
$\frac{15\pi}{100} - \frac{3\pi}{100} = \frac{12\pi}{100} = \frac{3\pi}{1000}$	
$\frac{1}{8} - \frac{1}{8} = \frac{1}{8} = \frac{1}{2}$	
Question 7 A	Question 8 E
$\log_a\left(\frac{b}{c}\right)^2 = 2\log_a\left(\frac{b}{c}\right)$	P(2) = 8 + 4a + 2b - 24 (1)
$\log_a\left(\frac{-}{c}\right) = 2\log_a\left(\frac{-}{c}\right)$	P(-3) = -27 + 9a - 3b - 24 (2)
$= 2 \left[\log_a b - \log_a c \right]$	4a + 2b = 16 (1a)
= 2[1.6 - 2.2]	9a - 3b = 51 (2a)
= 2[1.0 - 2.2] = 2[-0.6]	$(1a) \times 3 12a + 6b = 48$
= 2[-0.0] = - 1.2	$(2a) \times 2 \underline{18a - 6b = 102}$
- 1.2	Add $30a = 150$
	a = 5
	Substituting $a = 5$ in (1a)
	20 + 2b = 16
	$2b = -4 \implies b = -2$

Question 9 A	Question 10 C
$y = b + 2a^{3x}$	Since the vertical asymptote has the equation
$v - b = 2a^{3x}$	$x = 1$, then the graph of $\log_e x$ has been
$\frac{y-b}{2} = a^{3x}$	translated one unit to the right, so $A = -1$.
	When $x = 2, y = 3,$
$3x = \log_a\left(\frac{y-b}{2}\right)$	so $\log_e 1 + B = B = y$
$3x = \log_a(\frac{1}{2})$	$\Rightarrow B = 3$
$x = \frac{1}{3}\log_a\left(\frac{y-b}{2}\right)$	
Question 11 B	Question 12 A
Solutions are $x = 0$ (double root) and $x = 3$	This graph has amplitude $= 3$
\therefore graph has equation $y = Kx^2 (x - 3)$	It is translated 1 unit up.
When $x < 3, y < 0$	Period = $\pi = \frac{2\pi}{2\pi}$
When $x > 3, y > 0$	n
\therefore <i>K</i> is positive, so graph could be $y = x^2 (x - 3)$	$\therefore n = 2$
$\therefore y = x^3 - 3x^2$	It is a sin graph
	When $\theta = 0$, $3\sin 2(\theta + \frac{\pi}{4}) + 1 = 4$ so not B, C, D
	or E
Question 13 B	Question 14 E
Question 13 B Point of intersection is the point where	Question 14 E $y = \sin \log_e(x)$
Point of intersection is the point where	$y = \sin \log_e(x)$
-	$y = \sin \log_e(x)$ Let $u = \log_e(x)$
Point of intersection is the point where	$y = \sin \log_e(x)$ Let $u = \log_e(x)$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$	$y = \sin \log_e(x)$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen	$y = \sin \log_e(x)$ Let $u = \log_e(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_e(x)$ Let $u = \log_e(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen	$y = \sin \log_e(x)$ Let $u = \log_e(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_e(x)$ Let $u = \log_e(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_{e}(x)$ Let $u = \log_{e}(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_{e}(x)$ Let $u = \log_{e}(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $\frac{dy}{dx} = \cos u \times \frac{1}{x}$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_{e}(x)$ Let $u = \log_{e}(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $\frac{dy}{dx} = \cos u \times \frac{1}{x}$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_e(x)$ Let $u = \log_e(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $\frac{dy}{dx} = \cos u \times \frac{1}{x}$ $\frac{dy}{dx} = \cos \log_e x \times \frac{1}{x}$
Point of intersection is the point where $x^{2} + 1 = \frac{1}{x}$ Entering the two equations $y = x^{2} + 1$ and $y = \frac{1}{x}$ in the graphics calculator, it can be seen that 0.682 is closest to the <i>x</i> coordinate for the	$y = \sin \log_{e}(x)$ Let $u = \log_{e}(x)$ $\frac{du}{dx} = \frac{1}{x}$ $y = \sin u$ $\frac{dy}{du} = \cos u$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $\frac{dy}{dx} = \cos u \times \frac{1}{x}$

Question 15 A $f'(x) = x^{2} \times \frac{d}{dx}\cos 2x + \cos 2x \times \frac{d}{dx}x^{2}$ $= x^{2} \times (-2\sin 2x) + \cos 2x \times 2x$ $= -2x^{2}\sin 2x + 2x\cos 2x$ $= 2x(\cos 2x - x\sin 2x)$	Question 16 E For turning points $f'(x) = 0$ $\frac{(5+e^x)e^x - e^x(e^x)}{(5+e^x)^2} = 0$ $\therefore e^x(5+e^x - e^x) = 0$ $\therefore 5e^x = 0$ Which is not possible $x \in R$, so there are no stationary points.
Question 17 E $\frac{\pi}{2} \frac{\cos x}{\sin x + 1} dx$ Let $u = \sin x + 1$ $du = \cos x dx$ When $x = 0, u = 1$ When $x = \frac{\pi}{2}, u = 2$ $\int_{1}^{2} \frac{du}{u} = \log_{e} u]_{1}^{2}$ $= \log_{e} 2 - \log_{e} 1$ $= \log_{e} 2$ $= 0.693$	Question 18 C $f(x) = \int -7e^{-2x} dx$ $f(x) = \frac{7}{2}e^{-2x} + c$ When $x = 0$ $14 = \frac{7}{2} + c$ c = 10.5 Hence, $f(x) = 3.5e^{-2x} + 10.5$ $f(x) = Ae^{-2x} + B$ A = 3.5, B = 10.5
Question 19 B Reading the graph from left to right, $f(x)$ has a negative gradient, then a positive gradient, then a negative gradient. Hence A or B. When $x = 0$, the gradient is positive so not A.	Question 20 B $y = \frac{2}{x}$ $\int_{1}^{3} y dx = 2 \int_{1}^{3} \frac{1}{x} dx = 2[\log_{e} x]_{1}^{3}$ $= 2[\log_{e} 3 - \log_{e} 1]$ $= 2\log_{e} 3$ = 2.2 which is closest to 2

Question 21 D	Question 22 E
$\mu = np$	$\sum \Pr(X = x) = 1$
$6 = 10 \times p$	6 - 4a 3 + 2a 3 - 2a
0.6 = p	$\frac{6-4a}{8} + \frac{3+2a}{8} + \frac{3-2a}{8} = 1$
$\Pr(X=x) = \binom{n}{x} p^{x} (1-p)^{n-x}$	$\frac{12-4a}{8} = 1$
$\Pr(X=8) = \binom{10}{8} (0.6)^8 (0.4)^2$	12 - 4a = 8 $4 = 4a$
= 0.121	
	1 = a
Question 23 D Binomial with $n = 4, p = 0.7, x = 3 \text{ or } 4$	Question 24 C
-	\wedge
$\Pr(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$	
$\Pr(X=3) + \Pr(X=4)$	
$= \binom{4}{3} (0.7)^3 (0.3)^1 + \binom{4}{4} (0.7)^4 (0.3)^0$	
= 0.4116 + 0.2401	
= 0.6517	
which is closest to 0.7	$\Pr{X < Z} = 0.7$
	Z = 0.524
	$Z = \frac{a - \mu}{\sigma}$
	$Z = \frac{a - \mu}{\sigma}$ $0.524 = \frac{a - 2}{2.5}$
	a - 2 = 1.31
	<i>a</i> = 3.31

Question 25 E	Question 26 A
Total Outcomes = $\binom{52}{13}$	$f'(x) = \frac{(x^2 - 1) \times 1 - x(2x)}{(x^2 - 1)^2}$
Favourable Outcomes = $\begin{pmatrix} 4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 48 \\ 12 \end{pmatrix}$	$f'(x) = \frac{x^2 - 1 - 2x^2}{(x^2 - 1)^2}$
$\Pr. = \frac{\binom{4}{1} \times \binom{48}{12}}{\binom{52}{13}}$	$f'(x) = \frac{(x^2 - 1) \times 1 - x(2x)}{(x^2 - 1)^2}$ $f'(x) = \frac{x^2 - 1 - 2x^2}{(x^2 - 1)^2}$ $f'(x) = \frac{-(x^2 + 1)}{(x^2 - 1)^2}$
$\Pr = \frac{1}{(52)}$	For $x \in \mathbb{R}/\{-1,1\}$ the denominator is always
(13)	positive and the numerator is always negative
= 0.44	$\therefore f'(x) < 0$
	$\therefore f'(x) < 0$ $f'(x) \neq 0 \text{ because } x^2 \neq -1$ f(x) can equal 0 when x = 0
	f(x) can equal 0 when $x = 0$



Page 6

a. $f(x) = f(x) = \frac{1}{2} - \frac{1}{2$	Question 1	Question 2
$\frac{3}{8} = \frac{1}{8x^2 + 12x + 6x^2 + 1}$ b. $\frac{3}{8x^2 + 12x + 6x^2 + 1}$ b. $\frac{3}{8x^2 + 12x + 6x^2 + 1}$ b. $\frac{3}{8x^2 + 12x + 6x^2 + 1}$ $\frac{3}{2\sqrt{x}}$ $= 4x + 6\sqrt{x} + 3 + \frac{1}{2\sqrt{x}}$ (1 mark) Question 3 a. $y = 2x^2 - 2x + 3$ $\frac{dy}{dx} = 4x - 2$ (1 mark) When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2$ (1 mark) b. $\frac{dy}{dx} = 4 - 2 = 2$ (1 mark) $\frac{dy}{dx} = 4 - 2 = 2$ (1 mark) b. $\frac{dy}{dx} = 4 - 2 = 2$ (1 mark) $\frac{dy}{dx} = \frac{dx}{dx} = \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{2} + 1 + \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{2} + 1 + \frac{1}{2} + 1 + \frac{1}{2} + \frac{1}{2} + 1 + \frac{1}{2} + $	a.	
b. R (1 mark) c. Reflection in the X axis (1 mark) Question 3 a. $y = 2x^2 - 2x + 3$ $\frac{dy}{dx} = 4x - 2$ (1 mark) When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2$ (1 mark) b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^0$ $\theta = 63.4^0$ $\theta = 63^0$ to the nearest degree (1 mark) This is the acute angle Obtuse angle = $180 - 63 = 117^0$ (1 mark) b. $\tan \theta = 2$ $\theta = 180 - 63 = 117^0$ (1 mark) c. $Domain: x \ge 0$ Question 4 a. $2x - 2 \ge 0$ $2x \ge 2$ $x \ge 1$ $Domain: x \ge 1$ $Range: f(x) \ge 0$ (1 mark) b. $\operatorname{Interchange x and y}$ $x^2 + 2 = 2y$ $\frac{1}{2}x^2 + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^2 + 1$ (1 mark) c. $Domain: x \ge 0$	$\begin{array}{c c} 0 \\ \hline \\$	$= 8x^{\frac{3}{2}} + 12x + 6x^{\frac{1}{2}} + 1$ (1 mark) b.
Question 3Question 4a. $y = 2x^2 - 2x + 3$ a. $y = 2x^2 - 2x + 3$ $2x - 2 \ge 0$ $\frac{dy}{dx} = 4x - 2$ (1 mark) $2x \ge 2$ When $x = 1$ Domain: $x \ge 1$ $\frac{dy}{dx} = 4 - 2 = 2$ (1 mark)b.b.Interchange x and y $x = \sqrt{2y - 2}$ $x^2 = 2y - 2$ (1 mark) $\theta = 63.4^0$ $x^2 + 2 = 2y$ $\theta = 63^0$ to the nearest degree (1 mark) $\frac{1}{2}x^2 + 1 = y$ This is the acute angle 110^0 (1 mark)Obtuse angle = $180 - 63 = 117^0$ (1 mark) $f^{-1}(x) = \frac{1}{2}x^2 + 1$ (1 mark)c.Domain: $x \ge 0$		
a. $y = 2x^{2} - 2x + 3$ $\frac{dy}{dx} = 4x - 2 (1 \text{ mark})$ When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree } (1 \text{ mark})$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0} (1 \text{ mark})$ c. $Domain: x \ge 1$ Range: $f(x) \ge 0 (1 \text{ mark})$ b. Interchange x and y $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2 (1 \text{ mark})$ $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 (1 \text{ mark})$ c. Domain: $x \ge 0$		Oregin 4
$y = 2x^{2} - 2x + 3$ $\frac{dy}{dx} = 4x - 2 (1 \text{ mark})$ When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree } (1 \text{ mark})$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0} (1 \text{ mark})$ c. $Domain: x \ge 0$ $2x - 2 \ge 0$ $2x \ge 2$ $x \ge 1$ Domain: $x \ge 1$ Range: $f(x) \ge 0 (1 \text{ mark})$ b. $Interchange x \text{ and } y$ $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2 (1 \text{ mark})$ $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 (1 \text{ mark})$ c. $Domain: x \ge 0$	-	-
$\frac{dy}{dx} = 4x - 2 (1 \text{ mark})$ When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = 4 - 2 = 2 (1 \text{ mark})$ b. $\frac{dy}{dx} = \sqrt{2y - 2} (1 \text{ mark})$		
When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2 \text{ (1 mark)}$ b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) C. Domain: $x \ge 1$ Range: $f(x) \ge 0$ (1 mark) b. Interchange x and y $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2$ (1 mark) $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1$ (1 mark) c. Domain: $x \ge 0$	-	
When $x = 1$ $\frac{dy}{dx} = 4 - 2 = 2 \text{ (1 mark)}$ b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) C. Domain: $x \ge 1$ Range: $f(x) \ge 0$ (1 mark) b. Interchange x and y $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2$ (1 mark) $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1$ (1 mark) c. Domain: $x \ge 0$	$\frac{dy}{dx} = 4x - 2 (1 \text{ mark})$	$x \ge 1$
$\frac{dy}{dx} = 4 - 2 = 2 \text{ (1 mark)}$ b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = 180 - 63 = 117^{0} (1 mark) c. Domain: $x \ge 0$ Range: $f(x) \ge 0^{-1}$ (1 mark)		Domain: $x \ge 1$
b. tan $\theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0}$ to the nearest degree (1 mark) This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) C. Domain: $x \ge 0$ Interchange x and y $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2$ (1 mark) $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1$ (1 mark)		Range: $f(x) \ge 0$ (1 mark)
b. tan $\theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0}$ to the nearest degree (1 mark) This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) C. Domain: $x \ge 0$ Interchange x and y $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2$ (1 mark) $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1$ (1 mark)	$\frac{dy}{dt} = 4 - 2 = 2$ (1 mark)	L
b. $\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) $x = \sqrt{2y - 2}$ $x^{2} = 2y - 2$ (1 mark) $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1$ (1 mark) c. Domain: $x \ge 0$	dx	
$\tan \theta = 2$ $\theta = \tan^{-1} 2$ $\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = 180 - 63 = 117^{0} (1 mark) $x^{2} = 2y - 2 (1 mark)$ $x^{2} + 2 = 2y$ $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 (1 mark)$ c. Domain: $x \ge 0$	b.	
$\theta = 63.4^{0}$ $\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) $f^{-1}(x) = \frac{1}{2}x^{2} + 1 \text{ (1 mark)}$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 \text{ (1 mark)}$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 \text{ (1 mark)}$	$\tan \theta = 2$	
$\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 \text{ (1 mark)}$ C. Domain: $x \ge 0$	$\theta = \tan^{-1} 2$	
$\theta = 63^{0} \text{ to the nearest degree (1 mark)}$ This is the acute angle Obtuse angle = $180 - 63 = 117^{0}$ (1 mark) $\frac{1}{2}x^{2} + 1 = y$ $f^{-1}(x) = \frac{1}{2}x^{2} + 1 \text{ (1 mark)}$ C. Domain: $x \ge 0$	$\theta = 63.4^{\circ}$	$x^2 + 2 = 2y$
This is the acute angle Obtuse angle = $180 - 63 = 117^0$ (1 mark) $f^{-1}(x) = \frac{1}{2}x^2 + 1$ (1 mark) c. Domain: $x \ge 0$		$\frac{1}{x^2} + 1 = y$
Obtuse angle = $180 - 63 = 117^{\circ}$ (1 mark) $f^{-1}(x) = \frac{1}{2}x^{2} + 1$ (1 mark) c. Domain: $x \ge 0$		2 2
c. Domain: $x \ge 0$		$f^{-1}(x) = \frac{1}{x^2} + 1$ (1 mark)
Domain: $x \ge 0$	Obtuse angle = $180 - 63 = 117^{\circ}$ (1 mark)	
$\operatorname{Kaiigc.}_{j} (\lambda) \geq 1 (1 \operatorname{Ind}_{K})$		
		$ \text{range}, j (\lambda) \ge 1 (1 \text{lind} \mathbf{K}) $

Question 5	Question 6
Probability $= \frac{\binom{5}{1}\binom{6}{1}\binom{9}{1}}{\binom{20}{3}} (1 \text{ mark})$ $= \frac{5 \times 6 \times 9}{1140}$ $= 0.237 (1 \text{ mark})$	$g'(x) = \cos \frac{5x}{2} - 2\sin 3x$ $g(x) = \int (\cos \frac{5x}{2} - 2\sin 3x) dx (1 \text{ mark})$ $g(x) = \frac{2}{5} \sin \frac{5x}{2} + \frac{2}{3} \cos 3x + c$ $g(0) = \frac{2}{5} \times 0 + \frac{2}{3} \times 1 + c = 1$ $g(0) = 0 + \frac{2}{3} + c = 1$ $\therefore c = \frac{1}{3} (1 \text{ mark})$ $g(x) = \frac{2}{5} \sin \frac{5x}{2} + \frac{2}{3} \cos 3x + \frac{1}{3} (1 \text{ mark})$
Question 7	b.
a. $3e^{-\frac{x}{2}}\cos(2x) = 0$ $3e^{-\frac{x}{2}} \neq 0$ $\therefore \cos(2x) = 0 0 \le 2x \le 4\pi (1 \text{ mark})$ $2x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$ $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} (1 \text{ mark})$	$y = e^{\frac{1}{x}}$ Let $u = \frac{1}{x}$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{du}{dx} = -\frac{1}{x^{2}}$ $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ $\frac{dy}{dx} = e^{u} \times (-\frac{1}{x^{2}}) (1 \text{ mark})$ $\frac{dy}{dx} = -\frac{1}{x^{2}}e^{\frac{1}{x}}$ But $e^{\frac{1}{x}}$ is always positive, and $\frac{1}{x^{2}}$ is always positive So $\frac{dy}{dx}$ is always negative and therefore decreasing. However $x \neq 0$ since x is in the denominator. (1 mark)

END OF SUGGESTED SOLUTIONS 2002 Mathematical Methods Trial Examination 1

KILBAHA PTY LTD (Publishers in Education)	TEL: (03) 9817 5374
ABN 47 065 111 373	FAX: (03) 9817 4334
PO BOX 2227 KEW VIC 3101 AUSTRALIA	chemas@chemas.com