Part 1: Multiple-choice questions

Question 1

For the function $f(x) = 7 - 6\sin(4x)$, the amplitude and period respectively are

A. 7, $\frac{\pi}{3}$ **B.** -6, 8π **C.** -6, $\frac{\pi}{2}$ **D.** 7, $\frac{\pi}{2}$ **E.** 6, $\frac{\pi}{2}$

Question 2

Exact solutions to the equation $4\sin^2(2\theta) - 3 = 0$, where $-\pi \le \theta \le \pi$ are

A. $\theta = -0.5 \sin^{-1}(\frac{3}{4}), 0.5 \sin^{-1}(\frac{3}{4})$ only B. $\theta = -\frac{\pi}{3}, \frac{\pi}{3}$ only C. $\theta = -\frac{\pi}{6}, \frac{\pi}{6}$ only D. $\theta = -\frac{5\pi}{6}, -\frac{2\pi}{3}, -\frac{\pi}{3}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}$ E. $\theta = -\frac{\pi}{3}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{\pi}{3}$ only

Question 3

The graph of $y = \cos x$ is transformed by doubling the amplitude, doubling the period and then translating 1 unit vertically down. The new function would be

A. $y = 2\cos(x) - 1$

$$\mathbf{B.} \quad y = 2\cos(2x) - 1$$

C.
$$y = 0.5\cos(2x) - 1$$

- **D.** $y = 2\cos(0.5x) 1$
- **E.** $y = 2(\cos(0.5x) 1)$

If *a*, *b* and *c* are positive constants, a possible equation for the function shown could be

- **A.** $f(x) = a b \tan(x)$
- **B.** $f(x) = a + b \tan(x + c)$
- **C.** $f(x) = b a \tan(x + c)$
- **D.** $f(x) = a + b \tan(x)$
- **E.** $f(x) = a \tan(x b) + c$

Question 5

If $y = -3x^2 + 6x - 3a$, where *a* is a constant, then the *y* coordinate of the turning point is

- **A.** −1 + *a*
- **B.** 1 − *a*
- **C.** -3 + 3a
- **D.** 3 3*a*
- **E.** *a*

The term independent of *x* in the expansion $(2x^2 - \frac{3}{x})^6$ is

- **A.** 90
- **B.** –90
- **C.** 324
- **D.** 4860
- **E.** -4860

Question 7

If $2\log_2(x) - \log_2(x+4) = 1$ then *x* equals

- A. -2B. 4 C. -2 or 4D. $\frac{1 \pm \sqrt{17}}{2}$
- $\mathbf{E.} \quad \frac{1+\sqrt{17}}{2}$

Question 8

If $9^{x} - 3^{(x+1)} = 54$ then *x* equals

- **A.** -6
- **B.** -2
- **C.** 2
- **D.** 9
- **E.** –6 or 9

Let $h: D \to R$, $h(x) = \frac{2}{(3x-5)^2} + 1$ where *D* is the maximal domain of *h*. The smallest value of *b* such that $g: (b, \infty) \to R$ with g(x) = h(x) is a one to one function is

A. 2 **B.** $1\frac{2}{3}$ **C.** 1 **D.** $-1\frac{2}{3}$ **E.** 5

Question 10

The inverse function, $f^{-1}(x)$ of $f:(-\infty, -1] \rightarrow R$, $f(x) = -4(x+1)^2$ is

- A. $f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{\sqrt{-x}}{2} 1$
- **B.** $f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{\sqrt{x}}{2} 1$
- C. $f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{\pm \sqrt{-x}}{2} 1$

D.
$$f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{-\sqrt{-x}}{2} - 1$$

E.
$$f^{-1}: (-\infty, -1] \to R, f^{-1}(x) = \frac{-\sqrt{-x}}{2} - 1$$

The rule for the above graph could be

A. $y = \frac{-1}{x+a} + b$ B. $y = \frac{1}{x+a} + b$ C. $y = \frac{-1}{x-a} + b$ D. $y = \frac{-1}{x-a} - b$ E. $y = \frac{-1}{x+a} - b$

Question 12

The curve of a cubic function, f(x), in the form $f: R \to R$, where $f(x) = A(x - B)^3 + C$ and A, B and C are **positive** real constants will have a

- A. positive gradient for all $x \in R$.
- **B.** local minimum followed by a local maximum.
- **C.** a local maximum followed by a local minimum.
- **D.** a stationary point of inflection or a local maximum and local minimum.
- **E.** a stationary point of inflection.

The rule for the function of the graph shown below is of the form $y = A\log_e(x + B)$, where A and B are real constants.

The values of *A* and *B* are

A. $A = -\frac{1}{\log_e 4}$ B = -3 **B.** $A = -\frac{1}{\log_e 10}$ B = 3 **C.** A = -1 B = -3 **D.** A = -1.789 B = 2.477**E.** A = -0.721 B = 3

Question 14

The average rate of change of the function $f(x) = (x - 1)e^x$ with respect to x over [0, 2] is

A.
$$\frac{e^2 + 1}{2}$$

B. $2e^2$
C. xe^x
D. e^2

E. $\frac{e^2}{2}$

The equation of the normal to the curve of the function with equation $y = \frac{x}{\cos(x)}$ at the point where $x = \pi$ is

A. y = xB. $y = x + 2\pi$ C. y = -xD. $y = -x + 2\pi$ E. $y = x - 2\pi$

Question 16

The derivative of $log_e(tan(x))$ is

A. $\frac{\sec(x)}{\tan(x)}$ B. $\frac{\sec(x)}{\sin(x)}$ C. $\sec^2(x)\tan(x)$ D. $\sec^2(x)$ E. $\frac{\tan(x)}{\sec^2(x)}$

Question 17

If $y = \left(\sqrt{x^2 + 1}\right)^3$ then $\frac{dy}{dx}$ equals A. $3xy^{\frac{1}{3}}$ B. $3xy^3$ C. $\frac{3}{2}\sqrt{x^2 + 1}$ D. $2x\sqrt{x^2 + 1}$ E. $6x\sqrt{x^2 + 1}$

For the curve of the function with equation $y = (x-1)^3(x+2)$, the largest subset of *R* for which the gradient of the graph is positive is

A. $(-\infty, -2)$ B. $(-\infty, -1.25)$ C. $(-1.25, \infty)$ D. $(-1.25, 1) \cup (1, \infty)$ E. $(1, \infty)$

Question 19

The approximate area, in square units correct to two decimal places, bounded by the graph of $y = 10^x$ and the *x*-axis, using the left end point between x = 0 and x = 3 and using rectangular strips of width 0.5 is

- **A.** 231.01
- **B.** 433.86
- **C.** 480.76
- **D.** 610.50
- **E.** 730.51

The graph of y = f(x) is shown below.

If *h* is a function such that h'(x) = f(x), then the graph of *h* could be

Note: *c* is a real constant.

$$\int \frac{e^{3x} + 1}{e^x} dx \text{ equals}$$
A. $\frac{e^{2x}}{2} - e^x + c$
B. $\frac{e^{2x}}{2} + e^{-x} + c$
C. $2e^{2x} + e^{-x} + c$
D. $2e^{2x} - e^{-x} + c$

$$\mathbf{E.} \qquad \frac{e^{2x}}{2} - \frac{1}{e^x} + c$$

Question 22

If $\int_{1}^{a} \frac{1}{(x-2)^{3}} dx = -\frac{1}{2}$ then *a* equals **A.** $2 + \frac{\sqrt{2}}{2}$ **B.** $2 \pm \frac{\sqrt{2}}{2}$ **C.** $2 - \frac{\sqrt{2}}{2}$ **D.** $2 + \sqrt{2}$ **E.** $2 - \sqrt{2}$

The area, in square units, of the shaded region (the region bounded by the curve and the axes) shown correct to three decimal places is

- **A.** 0.289
- **B.** 0.578
- **C.** 0.587
- **D.** 0.876
- **E.** -0.289

Question 24

A random variable *X* has the following probability distribution.

x	0	1	2	3
$\Pr\left(X=x\right)$	а	2 <i>a</i>	4 <i>a</i>	За

The value of E(2X - 1) is

- **A.** 0.1
- **B.** 1.5
- **C.** 1.9
- **D.** 2.5
- **E.** 2.8

An examination paper consists of 33 multiple–choice questions, each question having 5 possible answers. A student randomly guesses the answer to every question. The probability of her getting 20 correct is

A.
$${}^{33}C_{20} (0.2)^{20} (0.8)^{13}$$

B. ${}^{33}C_5 (0.2)^{20}$
C. $\frac{20}{33}$
D. ${}^{33}C_{20} (0.2)^{13} (0.8)^{20}$
E. ${}^{33}C_{20} (0.2)^5$

Question 26

There are *b* identical black socks and *n* identical navy socks in a drawer. Two socks are taken from the drawer at random in the dark. The probability of obtaining a pair is

А.	$\frac{b(b-1)}{(b+n)}$
В.	$\frac{(b-n)}{(b+n)}$
C.	$\frac{b}{(b+n)}$
D.	$\frac{b(b-1) + n(n-1)}{(b+n)(b+n-1)}$
E.	$\frac{(b^2+n^2)}{(b+n)^2}$

Question 27

The height (*H*) of trees in a plantation is known to be normally distributed with a mean of 6 metres. If Pr(H > 6.5) = 0.05 then the standard deviation of the distribution is closest to

- **A.** 0.092
- **B.** 0.304
- **C.** 0.526
- **D.** 0.962
- **E.** 3.290

PART II SHORT ANSWER QUESTIONS (23 marks)

Question 1

Find exact solutions for $4\cos^2(x) + 4\sin(x) = 1$ given that $0 < x < 2\pi$.

3 marks

Question 2

Let $f: R \setminus \{-1\} \to R$, where $f(x) = \frac{x^2 + 2x + 2}{(x+1)^2}$.

a. Express f(x) in the form $\frac{A}{(x+1)^2} + B$, where *A* and *B* are positive integers.

- **b.** Hence, if f(x) is dilated a factor of 2 from the *x*-axis and then translated 1 unit to the right, write down the equation for this new function $f_1(x)$.
- **c.** State the range of $f_1(x)$.

2 + 1 + 1 = 4 marks

The curve with equation $y = x^3 + bx^2 + cx + d$ has a stationary point at (1, 2) and a *y*-intercept of 1.

a. Find *b*, *c* and *d*.

b. Write *y* in the form $A(x - B)^3 + C$, where *A*, *B* and *C* are positive integers.

c. Hence, show that the *x*-intercept is $\sqrt[3]{-2} + 1$.

3 + 1 + 1 = 5 marks

An experiment was conducted to find the relationship between two variables x and y. The graph of y against x^4 is plotted below and was found to be linear.

- **a.** Find a rule for *y* in terms of *x*.
- **b.** Factorise or use another method to find exact solutions to y = 0.

c. Find the exact area bounded by the quartic and the *x*-axis.

2 + 2 + 2 = 6 marks

For a discrete random variable *Y*, the probability function is defined by $f(Y) = \frac{Y}{10}$. Complete the distribution table and find E(Y) and hence find the standard deviation of *Y*.

Ŷ	0	1	2	3	4
f(Y)					

3 marks

Question 6

The probability that a person dies from a certain disease is 0.4. What is the probability correct to 4 decimal places that out of 10 randomly selected patients, at least 3 will die as a result of the disease?

2 marks