Part 1: Multiple-choice questions

Question 1

For the function $f(x) = 7 - 6\sin(4x)$, the amplitude and period respectively are

A. 7, $\frac{\pi}{3}$ 3 **B.** –6, 8π **C.** –6, $\frac{\pi}{2}$ 2 **D.** 7, $\frac{\pi}{2}$ 2 **E.** 6, $\frac{\pi}{2}$ 2

Question 2

Exact solutions to the equation $4\sin^2(2\theta) - 3 = 0$, where $-\pi \le \theta \le \pi$ are

A. $\theta = -0.5 \sin^{-1}$ (\overline{a} $\frac{3}{4}$), 0.5 sin⁻¹ ($\frac{3}{4}$) only **B.** $\theta = \frac{\pi}{3}$, $\frac{\pi}{3}$ only **C.** $\theta = \frac{\pi}{6}$, $\frac{\pi}{6}$ only **D.** $\theta = -\frac{1}{2}$ 5 $\frac{5\pi}{6}$ – 2 $rac{2\pi}{3}$ – $\frac{\pi}{3}$, - $\frac{\pi}{6}$, $\frac{\pi}{6}$, $\frac{\pi}{3}$, 2 $rac{2\pi}{3}$, 5 6 π **E.** $\theta = \frac{\pi}{3}$, - $\frac{\pi}{6}$, $\frac{\pi}{6}$, $rac{\pi}{3}$ only

Question 3

The graph of $y = cos x$ is transformed by doubling the amplitude, doubling the period and then translating 1 unit vertically down. The new function would be

- **A.** $y = 2\cos(x) -1$
- **B.** $y = 2\cos(2x) 1$
- **C.** $y = 0.5\cos(2x) 1$
- **D.** $y = 2\cos(0.5x) 1$
- **E.** $y = 2(\cos(0.5x) 1)$

If *a*, *b* and *c* are positive constants, a possible equation for the function shown could be

- **A.** $f(x) = a b \tan(x)$
- **B.** $f(x) = a + b \tan(x + c)$
- **C.** $f(x) = b a \tan(x + c)$
- **D.** $f(x) = a + b \tan(x)$
- **E.** $f(x) = a \tan(x b) + c$

Question 5

If $y = -3x^2 + 6x - 3a$, where *a* is a constant, then the *y* coordinate of the turning point is

- **A.** $-1 + a$
- **B.** $1 a$
- **C.** –3 + 3*a*
- **D.** 3 3*a*
- **E.** *a*

The term independent of *x* in the expansion $(2x^2 - \frac{3}{x})^6$ is

- **A.** 90
- **B.** –90
- **C.** 324
- **D.** 4860
- **E.** –4860

Question 7

If $2\log_2(x) - \log_2(x + 4) = 1$ then *x* equals

A. –2 **B.** 4 **C.** -2 or 4 **D.** $\frac{1 \pm \sqrt{17}}{2}$ 2 ± **E.** $\frac{1+\sqrt{17}}{2}$ +

Question 8

If $9^x - 3^{(x + 1)} = 54$ then *x* equals

2

- **A.** –6
- **B.** –2
- **C.** 2
- **D.** 9
- **E.** –6 or 9

Let $h: D \to R$, $h(x) =$ $\frac{2}{(3x-5)^2}$ + 1 where *D* is the maximal domain of *h*. The smallest value of *b* such that *g*: $(b, \infty) \rightarrow R$ with $g(x) = h(x)$ is a one to one function is

A. 2 **B.** 1 2 3 **C.** 1 **D.** -1 2 3 **E.** 5

Question 10

The inverse function, $f^{-1}(x)$ of $f: (-\infty, -1] \to R$, $f(x) = -4(x+1)^2$ is

A.
$$
f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{\sqrt{-x}}{2} - 1
$$

B.
$$
f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{\sqrt{x}}{2} - 1
$$

C.
$$
f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{\pm \sqrt{-x}}{2} - 1
$$

D.
$$
f^{-1}: (-\infty, 0] \to R, f^{-1}(x) = \frac{-\sqrt{-x}}{2} - 1
$$

E.
$$
f^{-1}: (-\infty, -1] \to R, f^{-1}(x) = \frac{-\sqrt{-x}}{2} - 1
$$

The rule for the above graph could be

A. $y = \frac{-}{x+1}$ + 1 $\frac{1}{x+a} + b$ **B.** $y = \frac{1}{x+1}$ $\frac{1}{x+a} + b$ **C.** $y = \frac{-}{x-1}$ − 1 $\frac{1}{x-a} + b$ **D.** $y = \frac{-}{x}$ − $\frac{-1}{x-a} - b$ **E.** $y = \frac{-}{x+1}$ + $\frac{-1}{x+a} - b$

Question 12

The curve of a cubic function, $f(x)$, in the form $f: R \to R$, where $f(x) = A(x - B)^3 + C$ and *A*, *B* and *C* are **positive** real constants will have a

- **A.** positive gradient for all $x \in R$.
- **B.** local minimum followed by a local maximum.
- **C.** a local maximum followed by a local minimum.
- **D.** a stationary point of inflection or a local maximum and local minimum.
- **E.** a stationary point of inflection.

The rule for the function of the graph shown below is of the form $y = A \log_e(x + B)$, where *A* and *B* are real constants.

The values of *A* and *B* are

 $A. \quad A = \frac{1}{\log_e 4}$ *B* = -3 **B.** $A = \frac{1}{\log_e 10}$ *B* = 3 **C.** $A = -1$ $B = -3$ **D.** $A = -1.789$ $B = 2.477$ **E.** $A = -0.721$ $B = 3$

Question 14

The average rate of change of the function $f(x) = (x - 1)e^x$ with respect to *x* over [0, 2] is

A.
$$
\frac{e^2 + 1}{2}
$$

\n**B.** $2e^2$
\n**C.** xe^x
\n**D.** e^2

E. *e*2 2

The equation of the normal to the curve of the function with equation $y = \frac{x}{\cos(x)}$ at the point where $x = \pi$ is

A. $y = x$ **B.** $y = x + 2\pi$ **C.** $y = -x$ **D.** *y* = –*x* + 2π **E.** $y = x - 2π$

Question 16

The derivative of $log_e(tan(x))$ is

A. $\frac{\sec(x)}{\tan(x)}$ $\tan(x)$ *x x* **B.** $\frac{\sec(x)}{\sin(x)}$ $sin(x)$ *x x* **C.** $\sec^2(x)\tan(x)$ **D.** $sec^2(x)$

$$
E. \quad \frac{\tan(x)}{\sec^2(x)}
$$

Question 17

If $y = \left(\sqrt{x^2 + 1}\right)^3$ then $\frac{dy}{dx}$ equals **A.** 3 1 *xy*3 **B.** 3*xy*³ **C.** $\frac{3}{2}\sqrt{x^2+1}$ **D.** $2x\sqrt{x^2+1}$ **E.** $6x\sqrt{x^2 + 1}$

For the curve of the function with equation $y = (x-1)^3(x + 2)$, the largest subset of *R* for which the gradient of the graph is positive is

A. $(-\infty, -2)$ **B.** $(-\infty, -1.25)$ **C.** $(-1.25, ∞)$ **D.** $(-1.25, 1) \cup (1, ∞)$ **E.** $(1, \infty)$

Question 19

The approximate area, in square units correct to two decimal places, bounded by the graph of $y = 10^x$ and the *x*–axis, using the left end point between $x = 0$ and $x = 3$ and using rectangular strips of width 0.5 is

- **A.** 231.01
- **B.** 433.86
- **C.** 480.76
- **D.** 610.50
- **E.** 730.51

The graph of $y = f(x)$ is shown below.

If *h* is a function such that $h'(x) = f(x)$, then the graph of *h* could be

Note: *c* is a real constant.

$$
\int \frac{e^{3x} + 1}{e^x} dx \text{ equals}
$$

\n**A.** $\frac{e^{2x}}{2} - e^x + c$
\n**B.** $\frac{e^{2x}}{2} + e^{-x} + c$
\n**C.** $2e^{2x} + e^{-x} + c$
\n**D.** $2e^{2x} - e^{-x} + c$

$$
E. \qquad \frac{e^{2x}}{2} - \frac{1}{e^x} + c
$$

Question 22

If ľ 1 2 1 $\int \frac{1}{(x-2)^3} dx = -\frac{1}{2}$ $\int_{1}^{a} \frac{1}{(x-2)^3} dx = -\frac{1}{2}$ then *a* equals **A.** $2 + \frac{\sqrt{2}}{2}$ 2 **B.** $2 \pm \frac{1}{2}$ 2 2 **C.** 2 – 2 2 **D.** $2 + \sqrt{2}$ **E.** $2 - \sqrt{2}$

The area, in square units, of the shaded region (the region bounded by the curve and the axes) shown correct to three decimal places is

- **A.** 0.289
- **B.** 0.578
- **C.** 0.587
- **D.** 0.876
- **E.** –0.289

Question 24

A random variable *X* has the following probability distribution.

The value of E(2*X* –1) is

- **A.** 0.1
- **B.** 1.5
- **C.** 1.9
- **D.** 2.5
- **E.** 2.8

An examination paper consists of 33 multiple–choice questions, each question having 5 possible answers. A student randomly guesses the answer to every question. The probability of her getting 20 correct is

A.
$$
{}^{33}C_{20}(0.2)^{20}(0.8)^{13}
$$

\n**B.** ${}^{33}C_{5}(0.2)^{20}$
\n**C.** ${}^{20}_{\overline{33}}$
\n**D.** ${}^{33}C_{20}(0.2)^{13}(0.8)^{20}$
\n**E.** ${}^{33}C_{20}(0.2)^{5}$

Question 26

There are *b* identical black socks and *n* identical navy socks in a drawer. Two socks are taken from the drawer at random in the dark. The probability of obtaining a pair is

A.
$$
\frac{b(b-1)}{(b+n)}
$$

\nB. $\frac{(b-n)}{(b+n)}$
\nC. $\frac{b}{(b+n)}$
\nD. $\frac{b(b-1) + n(n-1)}{(b+n)(b+n-1)}$
\nE. $\frac{(b^2 + n^2)}{(b+n)^2}$

Question 27

The height (*H*) of trees in a plantation is known to be normally distributed with a mean of 6 metres. If $Pr(H > 6.5) = 0.05$ then the standard deviation of the distribution is closest to

- **A.** 0.092
- **B.** 0.304
- **C.** 0.526
- **D.** 0.962
- **E.** 3.290

PART II SHORT ANSWER QUESTIONS (23 marks)

Question 1

Find exact solutions for $4 \cos^2(x) + 4 \sin(x) = 1$ given that $0 < x < 2\pi$.

3 marks

Question 2

Let $f: R \setminus \{-1\} \to R$, where $f(x) =$ $x^2 + 2x$ *x* 2 2 $2x + 2$ 1 $\frac{x^2 + 2x + 2}{(x + 1)^2}$.

a. Express $f(x)$ in the form *A x B* $(x + 1)$ $\frac{1}{(1)^2}$ + *B*, where *A* and *B* are positive integers.

- **b.** Hence, if $f(x)$ is dilated a factor of 2 from the *x*–axis and then translated 1 unit to the right, write down the equation for this new function $f_1(x)$.
- **c.** State the range of $f_1(x)$.

 $2 + 1 + 1 = 4$ marks

The curve with equation $y = x^3 + bx^2 + cx + d$ has a stationary point at (1, 2) and a *y*–intercept of 1.

a. Find *b*, *c* and *d*.

b. Write *y* in the form $A(x - B)^3 + C$, where *A*, *B* and *C* are positive integers.

c. Hence, show that the *x*–intercept is $\sqrt[3]{-2} + 1$.

 $3 + 1 + 1 = 5$ marks

An experiment was conducted to find the relationship between two variables *x* and *y*. The graph of *y* against x^4 is plotted below and was found to be linear.

- **a.** Find a rule for *y* in terms of *x*.
- **b.** Factorise or use another method to find exact solutions to $y = 0$.

c. Find the exact area bounded by the quartic and the *x*–axis.

 $2 + 2 + 2 = 6$ marks

For a discrete random variable *Y*, the probability function is defined by $f(Y) = \frac{Y}{10}$. Complete the distribution table and find E(*Y*) and hence find the standard deviation of *Y*.

3 marks

Question 6

The probability that a person dies from a certain disease is 0.4. What is the probability correct to 4 decimal places that out of 10 randomly selected patients, at least 3 will die as a result of the disease?

2 marks