2002 Mathematical Methods Written examination 1 (facts, skills and applications) Suggested answers and solutions

[E]

2.

Part I (Multiple-choice) Answers

1. E	2. E	3. D	4. E	5. C
6. A	7. A	8. C	9. B	10. A
11. D	12. D	13. C	14. B	15. D
16. C	17. A	18. B	19. A	20. B
21. B	22. D	23. D	24. A	25. A
26. B	27. E			

1. Amplitude = 1 Period = 4π

 $\Rightarrow \frac{2\pi}{n} = 4\pi$ $n = \frac{2\pi}{4\pi}$ $n = \frac{1}{2}$

This eliminates A and C. Shape is a cosine curve translated 1 unit

up, so the answer is $y = 1 + \cos\left(\frac{x}{2}\right)$

OR

Can use graphics calculator in RAD mode or substitute x = 0 in remaining answers to find when y = 2.

$$\sin(2x) = 1 \quad x \in [0, 4\pi]$$
[E]

$$2x = \sin^{-1}(1) \quad 2x \in [0, 8\pi]$$

$$2x = \frac{\pi}{2}, \frac{\pi}{2} + 2\pi, \frac{\pi}{2} + 6\pi, \frac{\pi}{2} + 8\pi$$

$$2x = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \frac{13\pi}{2}$$

$$\therefore x = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}$$

$$sum = \frac{\pi}{4} + \frac{5\pi}{4} + \frac{9\pi}{4} + \frac{13\pi}{4}$$

$$= \frac{28\pi}{4}$$

$$= 7\pi$$

3. $y = 18 - 5\sin\left(\frac{\pi t}{12}\right)$ [D]

max occurs when:

$$\sin\left(\frac{\pi t}{12}\right) = -1$$
 i.e. $y = 18 - 5(-1)$
= $18 + 5$
= $23 \ ^{\circ}C$
 $\frac{\pi t}{12} = \frac{3\pi}{2}$

t = 18 hours after midnight is 6 pm OR

Can use graphics calculator in RAD mode.

Type
$$y_1 = 18 - 15 \sin\left(\frac{\pi x}{12}\right)$$
, $X_{\min} = 0$,

X _{max} = 24, ZOOMFIT Find max turning point at (18, 23). 18 hours after midnight is 6 pm.

MA	V Mathematical Methods Examination 1, Solutions				
4.	<i>x</i> -intercepts are $x = -2, -1, 1, 3$ So factors are: $(x + 2)(x + 1)(x - 1)(x - 3)$	[E]	8.	Using the graphics calculator store the r values in L1	[C]
(E T ii f f t C C C	(x + 3) is not a factor so this eliminates A, B and C.			$\{1, 2, 3, 4, 5, 6, 7, 8\} \rightarrow L1$	
				and the y values in L2	
	The graph \bigwedge			$\{1.6, 2.6, 4.3, \ldots\} \rightarrow L2$	
	is the shape of a negative quartic function which eliminates D and can be presented as			Shape does not show linear, circular or logarithmic function, so eliminate A, D and E.	
	y = -(x+2)(x+1)(x-1)(x-3)			Either a power or exponential function.	
				To check which is the better fit press:	
	of $y = (x + 2)(x + 1)(x - 1)(5 - x)$			STAT CALC A: PwrReg ENTER	
	negative intercept.			$r = 0.9596$ $r^2 = 0.9208$	
5. Ver Ho Eli	Vertical asymptote at $x = 3$, so $b = -3$	[C]		STAT CALC 0: ExpReg ENTER	
	Horizontal asymptote at $y = 2$, so $c = 2$ Eliminate A, D and E.			$r^2 = 0.9999$ Exponential has r^2 closer to 1.	
	$y = \frac{a}{x^2 + 2}$		9.	$x^4 + x^3 - 3x^2 - 3x$	[B]
	x = 3 Graph passes through (4, 0) substituting			$= x(x^3 + x^2 - 3x - 3) \qquad \text{common factor}$	
	gives,			$=x[x^{2}(x+1)-3(x+1)]$ grouping	
	$0 = \frac{a}{2} + 2$			$= x(x+1)(x^2-3)$	
	4 - 3			$= x(x+1)(x+\sqrt{3})(x-\sqrt{3})$ DOPS	
	0 = a + z			\sim	
	a = -2			linear factors	
6.	y = f(-x) gives a reflection about the	[A]	10.	Let $m = 2 \log_e(x + 5)$	[A]
	y-axis. So the vertical asymptote will be			Take the \log_2 of both sides	
	reflected to become $x = -1$.			$\log_2 m = \log_2(x+5)$	
7.	The graph of the inverse function is a	[A]		so $m = x + 5$	
	reflection of $g(x)$ about the line $y = x$.		11.	1. A sketch of each function in the given domain:	
	y inverse (y = x) g(x)			(A) (B) (C) y y y y y y y y y y	r

(D)

one-to-one.

 $f(x) = \sin x$ have one *x* value for every y value. i.e. are one-to-one. For $f(x) = \sin x$, $x \in R$, the horizontal line test shows that there are many xvalues for the same *y* value, therefore not

Shows that all functions except

(E)

12. For f(x) to have an inverse function, **[D]** it must be one-to-one.

 $f(x) = (x - 3)^2 + 2$ is a many-to-one function if $x \in R$.

f(x) is a quadratic function with turning point at (3, 2).

Use *x* values on one side of the turning point as the domain to create a one-to-one function.

Therefore the domain can be $x \leq 3$

13. The graph of f(x) yields the following **[C]** observations for its gradient.

when $x = -1$	steep positive gradient
when $x = 0$	positive gradient, steepness decreasing
when $x = 1$	positive gradient closer to 0
when $x \ge 2$	small, positive gradient

14. $y = \log_e(\cos(2x))$

let
$$u = \cos 2x$$
, $\frac{du}{dx} = -2\sin 2x$
then $y = \log_e u$, $\frac{dy}{du} = \frac{1}{u}$

Using the chain rule

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$
$$= \frac{1}{u} \times -2\sin 2x$$
$$= \frac{1}{\cos 2x} \times -2\sin 2x$$
$$= \frac{-2\sin 2x}{\cos 2x}$$
$$= -2\tan 2x$$

curve $y = x \sin x$. Let u = x and $v = \sin x$ $\therefore \frac{du}{dx} = 1 \qquad \qquad \therefore \frac{dv}{dx} = \cos x$ y = uv $\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}$ (product rule) $= x \cos x + \sin x \times 1$ $= x \cos x + \sin x$ when $x = \pi$ $y = \pi \times \sin \pi$ $= \pi \times 0$ = 0 $(\pi, 0)$ point $\frac{dy}{dx} = \pi \cos \pi + \sin \pi$ $=\pi(-1)+0$ $= -\pi$ gradient of tangent Gradient of normal $m = \frac{-1}{-\pi} = \frac{1}{\pi}$ substitute (π , 0) and $m = \frac{1}{\pi}$ in y = mx + c $0=\frac{1}{\pi}\times\pi+c$ 0 = 1 + cc = -1Equation $y = \frac{1}{\pi}x - 1$ $y=\frac{1}{\pi}(x-\pi)$ 16. $\frac{dy}{dx} = -e^{-x}$ [C] when x = 0 $\frac{dy}{dx} = -e^{-0}$ = -1

15. Equation of normal y = mx + c on

[D]

17.
$$f(x + h) \approx f(x) + hf'(x)$$
 [A]
 $f(3.02) = f(3 + 0.02)$ where $x = 3$ $h = 0.02$
 $\approx f(3) + 0.02 f'(3)$
18. $f(0) = 0$ and $f(-3) = 0$ [B]
The function passes through the points
 $(0, 0)$ and $(-3, 0)$
 $f'(0) = 0$ and $f'(-1) = 0$.
There are stationary points at $x = 0$ and at
 $x = -1$
Therefore eliminate C.
 $f'(x) > 0$ for $x < -1$
The function is increasing when $x < -1$,

eliminate A and E. f'(x) < 0 for $x > -1 \setminus \{0\}$ The function is decreasing for

 $x > -1 \setminus \{0\}$ eliminate D.

19.
$$y = \sqrt{1+x}$$
 [A]

Area of rectangles

$$= 1 \times \sqrt{2} + 1 \times \sqrt{3} + 1 \times 2$$
$$= \sqrt{2} + \sqrt{3} + 2$$

20. $f'(x) = 2\cos(5x)$ antidifferentiating gives

f

$$(x) = \frac{2}{r}\cos(5x) + c$$

To check differentiate answer.

21.
$$\frac{dy}{dx} = \frac{3}{(2x+1)^{\frac{1}{2}}}$$

 $\frac{dy}{dx} = 3(2x+1)^{-\frac{1}{2}}$

antidifferentiating gives

$$y = \frac{3(2x+1)^{\frac{1}{2}}}{\frac{1}{2} \times 2} + c$$
$$y = 3(2x+1)^{\frac{1}{2}} + c$$

22. Area from a to b: $\int_{a}^{b} f(x)dx$ [D] Area from b to c:

$$\int_{b}^{c} f(x)dx = -\int_{b}^{c} f(x)dx = \int_{c}^{b} f(x)dx$$

Total Area =
$$\int_{a}^{b} f(x)dx + \int_{c}^{b} f(x)dx$$

- 23. A discrete random variable is a [D] 'counting' number (not a measurement). Goals are countable, you cannot have half a goal.
- 24. Let X be the number of \$10 chips [A] drawn. Therefore X = 0, 1, 2, 3 or 4.

Hypergeometric distribution (without replacement).

N = 20, n = 4, D = 5

Pr(at least one \$10 chip)

= Pr(X ≥ 1)
= 1 - Pr(X = 0)
= 1 -
$$\frac{{}^{5}C_{0} \times {}^{15}C_{4}}{{}^{20}C_{4}}$$

= 1 - $\frac{{}^{15}C_{4}}{{}^{20}C_{4}}$

[B]

[B]

25.
$$\mu = 10$$
 and $\sigma = 3$ [A]
For a binomial distribution $\mu = np$ and
 $\sigma = \sqrt{npq}$, $q = 1 - p$
 $10 = np$ and $3 = \sqrt{npq}$
 $9 = npq$
 $9 = 10q$
 $\therefore q = \frac{9}{10} = 0.9$
 $p = 1 - q$
 $p = 1 - 0.9$
 $p = 0.1$
26. $X \sim N(4.7, 1.2^2)$ [B]
 $Pr(X < 3.5)$
 $= Pr(Z < \frac{3.5 - 4.7}{1.2})$
 $= Pr(Z < -1)$
 $= Pr(Z > 1)$
 $Z = \frac{x - \mu}{\sigma}$

$$\begin{array}{c|c}
 & z \\
 \hline
 & -1 & 0 \\
 \hline
 & & z \\
 \hline
 & & z$$

[E]

27. $\mu = ?$ and $\sigma = 3$ Pr(X < 250) = 0.01

$$\Pr\left(Z < \frac{250 - \mu}{3}\right) = 0.01$$

Using the graphics calculator, press 2nd VARS and choose 3: invNorm (0.01) ENTER

$$\frac{250 - \mu}{3} = -2.326$$
$$250 - \mu = -6.979$$
$$\mu = 250 + 6.979$$
$$= 256.979$$
$$\simeq 257$$

Part 2: Short-answers

1. a. Using a tree diagram:

$$\Pr(X=0) = \Pr(TTT) = \frac{1}{8}$$

$$Pr(X = 1) = Pr(TTH) + Pr(THT) + Pr(HTT) = \frac{3}{8}$$
$$Pr(X = 2) = Pr(THH) + Pr(HTH) + Pr(HHT) = \frac{3}{8}$$
$$Pr(X = 3) = Pr(HHH) = \frac{1}{8}$$

OR Using the Binomial Distribution: $X \sim Bi\left(3, \frac{1}{2}\right)$

$$Pr(X = 0) = {\binom{3}{C_0} \times \left(\frac{1}{2}\right)^0 \times \left(\frac{1}{2}\right)^3} = {\left(\frac{1}{2}\right)^3} = \frac{1}{8}$$

$$Pr(X = 1) = {\binom{3}{C_1} \times \left(\frac{1}{2}\right)^1 \times \left(\frac{1}{2}\right)^2} = 3 \times \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

$$Pr(X = 2) = {\binom{3}{C_2} \times \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^1} = 3 \times \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

$$Pr(X = 3) = {\binom{3}{C_3} \times \left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^0} = {\left(\frac{1}{2}\right)^3} = \frac{1}{8}$$

OR Using the gaphics calculator,

2nd VARS 0: binompdf
$$\left(3, \frac{1}{2}\right)$$

will list the probability distribution. Answer can be converted to fractions using MATH 1: Frac

/

X Pr (X = x) $\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$

b.
$$E(X) = \sum xp(x)$$

= $0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$
= $0 + \frac{3}{8} + \frac{6}{8} + \frac{3}{8}$
= $\frac{12}{8}$
= 1.5

OR

E(X) = np for binomial distribution

$$= 3 \times \frac{1}{2}$$
$$= 1.5$$

2. Without replacement therefore Hypergeometric.

N = 100, n = 5, D = 5

Let X represent the number of defective alarms in the sample,

 $X=0,\,1,\,2,\,3,\,4,\,5$

Accepted when X = 0

$$\Pr(\mathbf{X} = \mathbf{0}) = \frac{\left({}^{5}C_{0}\right)\left({}^{95}C_{5}\right)}{\left({}^{100}C_{5}\right)}$$

= 0.770 (3 decimal places)

Note: there are calculator programs that are available which can calculate this.

b. Amplitude =
$$\frac{1.5 + 0.5}{2} = 1.0$$

4. a. $2 \times 2^{-2x} = 2002$

$$2^{-2x} = 1001$$
 (÷2 both sides)

$$\log_e 2^{-2x} = \log_e 1001$$
 (log_e both sides)

$$-2x \log_e 2 = \log_e 1001$$
 (÷ -2 log_e 2 both sides)

$$x = \frac{\log_e 1001}{-2\log_e 2}$$

x = -4.984 (3 decimal places)

b.
$$2 \log_{e} (3x + 1) - \log_{e} (x)$$

= $\log_{e} (3x + 1)^{2} - \log_{e} (x)$

$$= \log_{e} (3x+1)^{2} - \log_{e}$$
$$= \log_{e} \frac{(3x+1)^{2}}{x}$$

b. domain = $R \setminus \{3\}$ range = $R \setminus \{1\}$

6. a.
$$2\sin(3x) - 1 = -0.5$$
 $x \in \left[0, \frac{\pi}{2}\right]$
 $2\sin(3x) = 0.5$
 $\sin(3x) = 0.25$
 $3x = \sin^{-1}(0.25)$
 $3x = 0.253, \pi - 0.253$ $3x \in \left[0, \frac{3\pi}{2}\right]$
 $x = \frac{0.253}{3}, \frac{\pi - 0.253}{3}$
 $x = 0.084, 0.963$ (3 decimal places)

OR Using graphics calculator in RADIAN mode.

Enter $y_1 = 2\sin(3x) - 1$

 $y_2 = -0.5$ WINDOW Xmin = 0

Xmax =
$$\frac{\pi}{2}$$

ZOOMFIT Graph and find points of intersection

Press 2nd TRACE 5: Intersect Answer x = 0.084, 0.963 (3 decimal places)

b. $f(x) = 2\sin(3x) - 1$

 $f'(x) = 6\cos(3x)$

When
$$x = 1$$
 $f'(x) = 6\cos(3)$

$$= -5.940$$
 (3 d.p.)

OR Using graphics calculator

Press 2nd TRACE 6: $\frac{dy}{dx}x = 1$ ENTER

 $\frac{dy}{dx}$ = -5.940 (3 decimal places)

The rate of change is positive to the left of the turning point as shown on the graph. Find the turning point:

Press 2nd TRACE 4: Maximum etc.

This gives an *x*-coordinate of 0.523The interval over which the rate of change is positive is (0, 0.523) (3 decimal places) OR To find the turning point:

$$f'(x) = 0$$

$$6\cos(3x) = 0 \qquad x \in \left[0, \frac{\pi}{2}\right]$$

$$\cos(3x) = 0 \qquad 3x \in \left[0, \frac{3\pi}{2}\right]$$

$$3x = \cos^{-1}(0)$$

$$3x = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$x = \frac{\pi}{6}, \frac{3\pi}{6}$$

$$x \qquad < \frac{\pi}{6}, \frac{\pi}{6} \qquad > \frac{\pi}{6}$$

$$f'(x) \qquad +ve \qquad 0 \qquad -ve$$

$$(-\pi)$$

Rate is positive when $x \in \left(0, \frac{\pi}{6}\right)$ i.e. $x \in (0, 0.524)$ (3 decimal places) 7. a. f'(x) does not exist at the points of discontinuity i.e. at x = -2, 0, 4.

f'(x) does not exist where curves are not smooth i.e. at x = 2.

f'(x) = 0 when $x \simeq -0.6$ and when 0 < x < 2.

f'(x) > 0 when -2 < x < -0.6 and when 2 < x < 4.

f'(x) < 0 when -0.6 < x < 0 and becomes more negative from left to right.

For $x \in (-2, -0.6)$, the positive gradient decreases from left to right approaching zero.

For 2 < x < 4
$$f'(x) = \frac{\text{rise}}{\text{run}} = \frac{2}{2} = 1$$

 $y = f'(x)$

- **b**. Dom $f' = (-2, 0) \cup (0, 2) \cup (2, 4)$
- 8. a. Algebraic method, solve simultaneously

$$2x^{2} + 4x - 5 = 3x + 1$$

$$2x^{2} + x - 6 = 0$$

$$(2x - 3)(x + 2) = 0$$

$$2x - 3 = 0 \text{ or } x + 2 = 0$$

 $x = \frac{3}{2}, x = -2$

OR Using graphics calculator

$$y_1 = 2x^2 + 4x - 5$$

$$y_2 = 3x + 1$$

Zoomstandard

Find intersection by pressing

$$x = \frac{3}{2}$$
 and $x = -2$

b. When $x \in \left[-2, \frac{3}{2}\right]$ $y_2 > y_1$ where $y_1 = 2x^2 + 4x - 5$ and $y_2 = 3x + 1$ Area $= \int_{-2}^{\frac{3}{2}} (3x + 1) - (2x^2 + 4x - 5)dx$ $= \int_{-2}^{\frac{3}{2}} (3x + 1 - 2x^2 - 4x + 5)dx$ $= \int_{-2}^{\frac{3}{2}} (-2x^2 - x + 6)dx$ $= \left[\frac{-2x^3}{3} - \frac{x^2}{2} + 6x\right]_{-2}^{\frac{3}{2}}$ $= \left(\frac{-2\left(\frac{3}{2}\right)^3}{3} - \frac{\left(\frac{3}{2}\right)^2}{2} + 6\left(\frac{3}{2}\right)\right)$ $- \left(\frac{-2(-2)^3}{3} - \frac{(-2)^2}{2} + 6(-2)\right)$ $= \left(\frac{-27}{9} - \frac{9}{8} + 9\right) - \left(\frac{16}{3} - 2 - 12\right)$ $= \frac{45}{8} + \frac{26}{3}$

 \simeq 14.292 square units