Year 2003

VCE

Mathematical Methods Trial Examination 1

Suggested Solutions

© Kilbaha Pty Ltd 2003

Kilbaha Pty Ltd Publishers ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: 03 9817 5374 Fax: 03 9817 4334 chemas@chemas.com www.chemas.com

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Pty Ltd.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from Copyright Agency Limited. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.
- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute this electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute this printed file to the students at the school for their exclusive use.
- The Word file is supplied to schools for use ONLY within the school
- It may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the file must carry this copyright notice
- Commercial used of this material is expressly prohibited

These solutions are suggested solutions only. Teachers and students should carefully read the answers and comments supplied by the Mathematics Examiners.

2003 Mathematical Methods Trial Examinatio Suggested Solutions Part I	n 1 Page 1
Question 1 D	Question 2 C
Amplitude of $4\cos(3x - \frac{\pi}{2})$ is 4 This graph has a maximum of 4 and a minimum of - 4.	When $t = 2$, $y = 2$ which is true for A,C and E Looking only at A,C and E, When $t = 6$, $y = 1.5$ which is not true for A or E
When $y = 4\cos(3x - \frac{\pi}{2}) - 1$ the graph has a	
maximum of $4 - 1 = 3$ and a minimum of $-4 - 1 = -5$	
∴ Range is [-5,3]	
Question 3 E $\sqrt{2}\cos^2 x + \cos x - \sqrt{2} = 0$ $0 \le x \le 2\pi$ $(\sqrt{2}\cos x - 1)(\cos x + \sqrt{2}) = 0$ $\Rightarrow \sqrt{2}\cos x = 1$ or $\cos x = -\sqrt{2}$ $-1 \le \cos x \le 1$ $\therefore \cos x \ne -\sqrt{2}$ $\therefore \cos x = \frac{1}{\sqrt{2}}$ $0 \le x \le 2\pi$ $\therefore x = \frac{\pi}{4}, \frac{7\pi}{4}$ Sum of solutions $= \frac{\pi}{4} + \frac{7\pi}{4} = 2\pi$	Question 4 A This is a sin or cos graph. Maximum = 4 Minimum = -2 \therefore Amplitude = 3 (midway between -2 and 4) Graph has been translated up 1 so +1 on end. Period = $\pi = \frac{2\pi}{n}$ $\therefore n = 2$ Phase shift is $\frac{\pi}{4}$ to the right, $\therefore (x - \frac{\pi}{4})$ The graph without the phase shift would have had a maximum when $x = 0, \therefore$ cos graph.
Question 5 E $(2x-3)^7 = (2x)^7 - {7 \choose 1}(2x)^6(3)^1 + {7 \choose 2}(2x)^5(3)^2$ $-{7 \choose 3}(2x)^4(3)^3 + {7 \choose 4}(2x)^3(3)^4$ $-{7 \choose 5}(2x)^2(3)^5 + \dots$	Question 6 B $\log_e(x^2) - \log_e(2x) = q$ $\log_e \frac{x^2}{2x} = q$ $\log_e \frac{x}{2} = q$ $e^q = \frac{x}{2}$
Coefficient of x^2 is $-\binom{7}{5}(2)^2(3)^5 = -20412$	$x = 2e^q$

2003 Mathematical Methods Trial Examination 1

Question 7 E	Question 8 C
$h(x) = \frac{h(x)}{4}$ If $g(x)$ is $[-4,0)$ then $f(x)$ is $[-4,0)$ If $g(x)$ is $[-4,4]$ then $f(x)$ is $[-4,4]$ If $g(x)$ is $(0,4)$ then $f(x)$ is $(0,4)$ If $g(x)$ is $(-4,0]$ then $f(x)$ is $(-4,0]$ If $g(x)$ is $(0,6]$ then $f(x)$ is $(0,4]$	The graph of $y = \frac{1}{x}$ is reflected in the <i>x</i> axis to give $y = -\frac{1}{x}$. It is translated 2 units to the right to give $y = -\frac{1}{x-2}$. It is dilated by a factor <i>k</i> to give $y = -\frac{k}{x-2}$. When $x = 0$, $y = 1$ $y = -\frac{k}{-2} = 1$ $\therefore k = 2$ $y = -\frac{2}{x-2}$ which means the original graph has been reflected in the <i>x</i> axis, translated 2 units to the right parallel to the <i>x</i> axis and dilated by a factor of 2
Question 9 C	Question 10 C
For this many-one function to have an inverse that is also a function, it must have its domain restricted so that it is a one-one function. This can be done by restricting the domain from the axis of symmetry, which in this case is $x = 0$. \therefore [0,3] which means $a = 0$	Asymptote for $y = be^x$ is $y = 0$ \therefore asymptote for $y = be^x + a$ is $y = a$ Asymptote on the given graph is $y = -6$ $\therefore a = -6$ When $x = 0$, $y = a + b = 1$ from graph $\therefore b = 7$

Question 11 C	Question 12 E
Let $y = e^x$	Equation of graph is of the form
. 4	$y = k(x-a)(x-b)(x-c)^2$
$y = 1 + \frac{4}{y}$	When $x = 0$, $y < 0$
$y^2 = y + 4$	\therefore k is negative and could be -1
	$\therefore y = -(x-a)(x-b)(x-c)^2$
$y^2 - y - 4 = 0$	$\therefore y = -(x-b)(x-a)(x-c)^2$
$y = \frac{1 \pm \sqrt{1 + 16}}{2}$	$\therefore y = (b - x)(x - a)(x - c)^2$
2	$\therefore y = (x - a) (b - x)(x - c)^2$
$y = \frac{1 \pm \sqrt{17}}{2}$	
$\therefore e^x = \frac{1 + \sqrt{17}}{2} \text{ or } \frac{1 - \sqrt{17}}{2}$	
But $e^x > 0$	
$\therefore e^x = \frac{1 + \sqrt{17}}{2} = 2.56155$	
$\therefore x = \log_e 2.56155 = 0.9406$	
Question 13 D	Question 14 B
Let $u = 3x^2 + 5$	Gradient of curve at point of tangency = gradient
$du = \epsilon u$	of tangent line = 1
$\frac{du}{dx} = 6x$	$\therefore \frac{dy}{dx} = 1$ at point of tangency
$y = \log_e u$	$\therefore 2x = 1$
$\frac{dy}{du} = \frac{1}{u}$	
du u	$\Rightarrow x = \frac{1}{2}$
$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$	
	When $x = \frac{1}{2}$, $y = \frac{1}{2} - 7$
$\frac{dy}{dx} = \frac{1}{u} \times 6x$	1
$\alpha x = \alpha$	$\Rightarrow y = -6\frac{1}{2}$
$\frac{dy}{dx} = \frac{6x}{u} = \frac{6x}{3x^2 + 5}$	\therefore Point of tangency is $\left(\frac{1}{2}, -\frac{13}{2}\right)$
	On curve when $x = \frac{1}{2}$, $y = -\frac{13}{2}$
	$\therefore -\frac{13}{2} = \frac{1}{4} + c$
	$\Rightarrow c = -\frac{26}{4} - \frac{1}{4} = -\frac{27}{4}$

$\frac{dy}{dx} = x^{2} \times \frac{d}{dx} \cos 2x + \cos 2x \times \frac{d}{dx}x^{2}$ $= x^{2} \times (-2\sin 2x) + \cos 2x \times 2x$ $= -2x^{2} \sin 2x + 2x \cos 2x$ When $x = \pi$ $\frac{dy}{dx} = -2x^{2} \sin 2\pi + 2\pi \cos 2\pi$ When $x = \pi$ $\frac{dy}{dx} = -2x^{2} \sin 2\pi + 2\pi \cos 2\pi$ $\frac{dy}{dx} = -2x^{2} \sin 2\pi + 2\pi \cos 2\pi$ $\frac{dy}{dx} = -0 + 2\pi = 2\pi$ Question 18 B $\frac{dy}{dx} = -3x^{2} + 4x + 7 = 0 \text{ for T.P.}$ $(3x-7)(-x-1) = 0$ $\therefore 3x = 7 \text{ or } x = -1$ $\therefore \text{ turning points exist at x = \frac{7}{3} \text{ or } x = -1 When x < -1 \frac{dy}{dx} < 0 When x > \frac{7}{3} \frac{dy}{dx} < 0 When x > \frac{7}{3} \frac{dy}{dx} < 0 Hence, local minimum when x = -1 and gradient is positive for -1 < x < \frac{7}{3} Question 21 D f(x) = \int (3e^{\pi} \sin \frac{x}{4})dx f(x) = 3e^{\pi} (-\cos \frac{x}{4}) + \frac{1}{4} + c f(x) = -12e^{\pi} \cos \frac{x}{4} + c f(x) = -12e^{\pi} \cos \frac{x}{4} + c f(x) = -12e^{\pi} \cos \frac{x}{4} + c \frac{dy}{dx} = 12e^{\pi} \cos \frac{x}{4} + c \frac{dy}{dx} = 12$	Question 15 B	Question 16 B
$\begin{aligned} x^{2} \times (-2\sin 2x) + \cos 2x \times 2x \\ x^{2} = -2x^{2} \sin 2x + 2x \cos 2x \end{aligned}$ $\begin{aligned} For 0 < x < 4 except when x = 2, y = f(x) is an increasing graph, hence the gradient, i.e. f'(x) is greater than 0 in this region. \end{aligned}$ $\begin{aligned} When x = \pi \\ \frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} = -3x^{2} + 4x + 7 = 0 \text{ for T}.P. \\ (3x-7)(-x-1) = 0 \end{aligned}$ $\therefore 3x = 7 \text{ or } x = -1 \therefore x = \frac{7}{3} \text{ or } x = -1 \end{aligned}$ $\begin{aligned} \text{When } x < -1 \frac{dy}{dx} < 0 \end{aligned}$ $\begin{aligned} \text{When } x < -1 \frac{dy}{dx} < 0 \end{aligned}$ $\begin{aligned} \text{When } x < \frac{7}{3} \frac{dy}{dx} < 0 \end{aligned}$ $\begin{aligned} \text{When } x > \frac{7}{3} \frac{dy}{dx} < 0 \end{aligned}$ $\begin{aligned} \text{Hence, local minimum when } x = -1 \text{ and gradient is positive for } -1 < x < \frac{7}{3} \end{aligned}$ $\begin{aligned} \text{Question 20 D} \end{aligned}$ $\begin{aligned} \text{Question 21 D} \\ \text{Area of trapezium } = \frac{1}{2}(f(1) + f(1.5))0.5 + \frac{1}{2}(f(1.5) + f(2))0.5 \\ f(1) = 1 + 3 = 4 \\ f(1.5) = 2.25 + 3 = 5.25 \\ f(2) = 4 + 3 = 7 \end{aligned}$ $\therefore \text{ Area under graph } = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ \therefore \text{ Area under graph } = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \end{aligned}$		-
$\begin{aligned} -2x^{2} \sin 2x + 2x \cos 2x \\ \text{When } x = \pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \\ \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \\ \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \cos 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi + 2\pi \end{aligned}$ $\end{aligned}$ $\begin{aligned} \frac{dy}{dx} &= -2\pi^{2}^{2} \sin 2\pi +$	$\frac{dx}{dx} = x \times \frac{dx}{dx} \cos 2x + \cos 2x \times \frac{dx}{dx}$	
$= -2x^{2} \sin 2x + 2x \cos 2x$ When $x = \pi$ $\frac{dy}{dx} = -2\pi^{2} \sin 2\pi + 2\pi \cos 2\pi$ $\frac{dy}{dx} = -0 + 2\pi = 2\pi$ Cuestion 18 B $\frac{dy}{dx} = -0 + 2\pi = 2\pi$ The derivative does not exist at $x = 2$ or at $x = -1$, or at $x = 4$ \therefore domain of $f^{1}(x) = R \setminus \{-1, 2, 4\}$ Cuestion 18 B $\frac{dy}{dx} = -3x^{2} + 4x + 7 = 0 \text{ for T.P.}$ $(3x - 7)(-x - 1) = 0$ $\therefore 3x = 7 \text{ or } x = -1$ $\therefore x = \frac{7}{3} \text{ or } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $-1 < x < \frac{7}{3}$ $\frac{dy}{dx} < 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{x} \sin \frac{x}{4})dx$ $f(x) = 3e^{x} \int (\sin \frac{1}{4}x)dx$ $f(x) = 3e^{x} (-\cos \frac{x}{4}) + \frac{1}{4} + c$ $f(x) = -12e^{x} \cos \frac{x}{4} + c$ $f(x) = -12e^{x} \cos \frac{x}{4} + c$ $\frac{1}{2}e^{x} + 2e^{x}$ $\frac{1}{2}e^{x} + 2e^{x} + 2e^{x}$ $\frac{1}{2}e^{x} + 2e^{x} + 2e^{x} + 2e^{x}$ $\frac{1}{2}e^{x} + 2e^{x} + 2e^{x} + 2e^{x}$ $\frac{1}{2}e^{x} + 2e^{x} + 2e^{x} + 2e^{x} + 2e^{x}$ $\frac{1}{2}e^{x} + 2e^{x} + 2e^{x} + 2e^{x} + 2e^{x}$ $\frac{1}{2}e^{x} + 2e^{x} $	$= x^2 \times (-2\sin 2x) + \cos 2x \times 2x$	
When $x = \pi$ Question 17 B $\frac{dy}{dx} = -2\pi^2 \sin 2\pi + 2\pi \cos 2\pi$ The derivative does not exist at $x = 2$ or at $\frac{dy}{dx} = -2\pi^2 \sin 2\pi + 2\pi \cos 2\pi$ The derivative does not exist at $x = 2$ or at $\frac{dy}{dx} = -0 + 2\pi = 2\pi$ Cuestion 18 B $\frac{dy}{dx} = -3x^2 + 4x + 7 = 0$ for T.P.Question 19 C $(3x-7)(-x-1) = 0$ $y = \int \frac{dx}{2x+1}$ $(3x-7)(-x-1) = 0$ $y = \int \frac{dx}{2x+1}$ \therefore turning points exist at $x = \frac{7}{3}$ and $x = -1$ $y = \frac{1}{2}\int \frac{2dx}{2x+1}$ When $x < -1$ $\frac{dy}{dx} < 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ F(x) = $\int (3e^x \sin \frac{x}{4})dx$ Area of trapezium $= \frac{1}{2}(a+b)h$ $f(x) = 3e^x \int (\sin \frac{1}{4}x)dx$ $x = 4$ $f(x) = -12e^x \cos \frac{x}{4} + c$ $f(1.5) = 2.25 + 3 = 5.25$ $f(2) = 4 + 3 = 7$ x Area under graph $= \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	$= -2x^2\sin 2x + 2x\cos 2x$	
$\begin{aligned} \frac{dy}{dx} &= -0 + 2\pi = 2\pi \\ x &= -1, \text{ or at } x = 4 \\ \therefore \text{ domain of } f^{1}(x) = R \setminus \{-1,2,4\} \end{aligned}$ $\begin{aligned} &\textbf{Question 18 B} \\ \frac{dy}{dx} &= -3x^{2} + 4x + 7 = 0 \text{ for T.P.} \\ (3x - 7)(-x - 1) = 0 \\ \therefore 3x = 7 \text{ or } x = -1 \\ \therefore \text{ turning points exist at } x = \frac{7}{3} \text{ or } x = -1 \\ \therefore \text{ turning points exist at } x = \frac{7}{3} \text{ on } x = -1 \end{aligned}$ $\begin{aligned} &\textbf{When } x < -1 \frac{dy}{dx} < 0 \\ \text{When } x < -1 \frac{dy}{dx} < 0 \\ \text{When } x > \frac{7}{3} \frac{dy}{dx} < 0 \\ \text{Hence, local minimum when } x = -1 \text{ and} \\ \text{gradient is positive for } -1 < x < \frac{7}{3} \end{aligned}$ $\begin{aligned} &\textbf{Question 20 D} \\ f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx \\ f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx \\ f(x) = 3e^{\pi} (-\cos \frac{x}{4}) + \frac{1}{4} + c \\ f(x) = -12e^{\pi} \cos \frac{x}{4} + c \end{aligned}$ $\begin{aligned} &\textbf{Question 21 D} \\ \textbf{Area of trapezium} = \frac{1}{2}(f(1) + f(1.5))0.5 + \frac{1}{2}(f(1.5) + f(2))0.5 \\ f(1) = 1 + 3 = 4 \\ f(1.5) = 2.25 + 3 = 5.25 \\ f(2) = 4 + 3 = 7 \\ \therefore \text{ Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ \textbf{X} \end{aligned}$	When $x = \pi$	
$\frac{dy}{dx} = -0 + 2\pi = 2\pi$ $\therefore \text{ domain of } f^{1}(x) = R \setminus \{-1,2,4\}$ Question 18 B $\frac{dy}{dx} = -3x^{2} + 4x + 7 = 0 \text{ for T.P.}$ $(3x-7)(-x-1) = 0$ $\therefore 3x = 7 \text{ or } x = -1 \therefore x = \frac{7}{3} \text{ or } x = -1$ $\therefore \text{ turning points exist at } x = \frac{7}{3} \text{ and } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $x < -1$ $\frac{dy}{dx} < 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx$ $f(x) = 3e^{\pi} (-\cos \frac{x}{4}) + \frac{1}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $\int (15) = 2.25 + 3 = 5.25$ $f(2) = 4 + 3 = 7$ $\therefore \text{ Area under graph } = \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	$\frac{dy}{dx} = -2\pi^2 \sin 2\pi + 2\pi \cos 2\pi$	
$\frac{dy}{dx} = -3x^{2} + 4x + 7 = 0 \text{ for T.P.}$ $(3x-7)(-x-1) = 0$ $\therefore 3x = 7 \text{ or } x = -1 \therefore x = \frac{7}{3} \text{ or } x = -1$ $\therefore \text{ turning points exist at } x = \frac{7}{3} \text{ and } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $-1 < x < \frac{7}{3}$ $\frac{dy}{dx} < 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4})dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x)dx$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $y = \int \frac{dx}{2x+1}$ $y = \frac{1}{2} \int \frac{2dx}{2x+1}$ $y = \frac{1}{2} \log_{c}(2x+1) + c$ We have the equation $x = -1$ and $y = \frac{1}{2} \log_{c}(2x+1) + c$ $y =$	$\frac{dy}{dx} = -0 + 2\pi = 2\pi$	
$\frac{dy}{dx} = -3x^{2} + 4x + 7 = 0 \text{ for T.P.}$ $(3x-7)(-x-1) = 0$ $\therefore 3x = 7 \text{ or } x = -1 \therefore x = \frac{7}{3} \text{ or } x = -1$ $\therefore \text{ turning points exist at } x = \frac{7}{3} \text{ and } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $-1 < x < \frac{7}{3}$ $\frac{dy}{dx} < 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4})dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x)dx$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $y = \int \frac{dx}{2x+1}$ $y = \frac{1}{2} \int \frac{2dx}{2x+1}$ $y = \frac{1}{2} \log_{c}(2x+1) + c$ We have the equation $x = -1$ and $y = \frac{1}{2} \log_{c}(2x+1) + c$ $y =$	Ouestion 18 B	Ouestion 19 C
$(3x-7)(-x-1) = 0$ $\therefore 3x = 7 \text{ or } x = -1 \therefore x = \frac{7}{3} \text{ or } x = -1$ $\therefore \text{ turning points exist at } x = \frac{7}{3} \text{ and } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $-1 < x < \frac{7}{3}$ $\frac{dy}{dx} < 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4})dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x)dx$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $y = \frac{1}{2} \int \frac{2dx}{2x+1}$ $y = \frac{1}{2} \log_{e}(2x+1) + c$ $y = \frac{1}{2} (1 + 1) + c$	-	-
$\therefore 3x = 7 \text{ or } x = -1 \therefore x = \frac{1}{3} \text{ or } x = -1$ $\therefore \text{ turning points exist at } x = \frac{7}{3} \text{ and } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $-1 < x < \frac{7}{3}$ $\frac{dy}{dx} > 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4}$		
$\therefore \text{ turning points exist at } x = \frac{1}{3} \text{ and } x = -1$ When $x < -1$ $\frac{dy}{dx} < 0$ When $-1 < x < \frac{7}{3}$ $\frac{dy}{dx} > 0$ When $x > \frac{7}{3}$ $\frac{dy}{dx} < 0$ Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx$ $f(x) = 3e^{\pi} (-\cos \frac{x}{4}) + \frac{1}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = x + c$ $f($	5	
$\begin{aligned} & \text{When } -1 < x < \frac{7}{3} \frac{dy}{dx} > 0 \\ & \text{When } x > \frac{7}{3} \frac{dy}{dx} < 0 \\ & \text{Hence, local minimum when } x = -1 \text{ and} \\ & \text{gradient is positive for } -1 < x < \frac{7}{3} \end{aligned}$ $\begin{aligned} & \textbf{Question 20 D} \\ & f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx \\ & f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx \\ & f(x) = 3e^{\pi} (-\cos \frac{x}{4}) + \frac{1}{4} + c \\ & f(x) = -12e^{\pi} \cos \frac{x}{4} + c \end{aligned}$ $\begin{aligned} & \textbf{Question 21 D} \\ & \text{Area of trapezium} = \frac{1}{2}(a+b)h \\ & \therefore \text{ Area under graph} = \frac{1}{2}(f(1) + f(1.5))0.5 + \\ & \frac{1}{2}(f(1.5) + f(2))0.5 \\ & f(1) = 1 + 3 = 4 \\ & f(1.5) = 2.25 + 3 = 5.25 \\ & f(2) = 4 + 3 = 7 \\ & \therefore \text{ Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ & \text{Area under graph} = \frac{1}{$: turning points exist at $x = \frac{7}{3}$ and $x = -1$	2 2 2 2
$\begin{aligned} \text{When } x > \frac{7}{3} & \frac{dy}{dx} < 0 \\ \text{Hence, local minimum when } x = -1 \text{ and} \\ \text{gradient is positive for } -1 & < x < \frac{7}{3} \end{aligned}$ $\begin{aligned} \textbf{Question 20 D} \\ f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx \\ f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx \\ f(x) = 3e^{\pi} (-\cos \frac{x}{4}) \div \frac{1}{4} + c \\ f(x) = -12e^{\pi} \cos \frac{x}{4} + c \end{aligned}$ $\begin{aligned} \textbf{Question 21 D} \\ \text{Area of trapezium} = \frac{1}{2}(a+b)h \\ \therefore \text{ Area under graph} = \frac{1}{2}(f(1) + f(1.5))0.5 + \\ \frac{1}{2}(f(1.5) + f(2))0.5 \\ f(1) = 1 + 3 = 4 \\ f(1.5) = 2.25 + 3 = 5.25 \\ f(2) = 4 + 3 = 7 \\ \therefore \text{ Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2)) \\ \text{Area under graph} = \frac{1}{4}(f(1) + 2f(1.5$	When $x < -1$ $\frac{dy}{dx} < 0$	
Hence, local minimum when $x = -1$ and gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4})dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x)dx$ $f(x) = 3e^{\pi} (-\cos \frac{x}{4}) \div \frac{1}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ Question 21 D Area of trapezium $= \frac{1}{2}(a+b)h$ \therefore Area under graph $= \frac{1}{2}(f(1) + f(1.5))0.5 + \frac{1}{2}(f(1.5) + f(2))0.5$ f(1) = 1 + 3 = 4 f(1.5) = 2.25 + 3 = 5.25 f(2) = 4 + 3 = 7 \therefore Area under graph $= \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	When $-1 < x < \frac{7}{3} \frac{dy}{dx} > 0$	
gradient is positive for $-1 < x < \frac{7}{3}$ Question 20 D Question 21 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4})dx$ Area of trapezium $= \frac{1}{2}(a+b)h$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x)dx$ \therefore Area under graph $= \frac{1}{2}(f(1) + f(1.5))0.5 + \frac{1}{2}(f(1.5) + f(2))0.5$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(1.5) = 2.25 + 3 = 5.25$ $f(2) = 4 + 3 = 7$ \therefore Area under graph $= \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	When $x > \frac{7}{3} = \frac{dy}{dx} < 0$	
Question 20 D Question 21 D $f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx$ Area of trapezium $= \frac{1}{2}(a+b)h$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx$ \therefore Area under graph $= \frac{1}{2}(f(1) + f(1.5))0.5 + \frac{1}{2}(f(1.5) + f(2))0.5$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(1.5) = 2.25 + 3 = 5.25$ $f(2) = 4 + 3 = 7$ \therefore Area under graph $= \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	Hence, local minimum when $x = -1$ and	
$f(x) = \int (3e^{\pi} \sin \frac{x}{4}) dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx$ $f(x) = 3e^{\pi} (-\cos \frac{x}{4}) \div \frac{1}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi$	gradient is positive for $-1 < x < \frac{7}{3}$	
$f(x) = \int (3e^{x} \sin \frac{1}{4})dx$ $f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x)dx$ $f(x) = 3e^{\pi} (-\cos \frac{x}{4}) \div \frac{1}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos \frac$	Question 20 D	-
$f(x) = 3e^{\pi} \int (\sin \frac{1}{4}x) dx$ $f(x) = 3e^{\pi} (-\cos \frac{x}{4}) \div \frac{1}{4} + c$ $f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(x) = -12e^{\pi} \cos $	$f(x) = \int (3e^{\pi} \sin \frac{x}{x}) dx$	Area of trapezium = $\frac{1}{2}(a+b)h$
$f(x) = 3e^{\pi}(-\cos\frac{x}{4}) \div \frac{1}{4} + c$ $f(x) = -12e^{\pi}\cos\frac{x}{4} + c$ $f(x) = -12e^{\pi}\cos\frac{x}{4} + c$ $f(x) = -12e^{\pi}\cos\frac{x}{4} + c$ $f(1.5) = 2.25 + 3 = 5.25$ $f(2) = 4 + 3 = 7$ $\therefore \text{ Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	1	: Area under graph = $\frac{1}{2}(f(1) + f(1.5))0.5 +$
$f(x) = -12e^{\pi} \cos \frac{x}{4} + c$ $f(1.5) = 2.25 + 3 = 5.25$ $f(2) = 4 + 3 = 7$ $\therefore \text{ Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	4	$\frac{1}{2}(f(1.5) + f(2))0.5$
f(2) = 4 + 3 = 7 $\therefore \text{ Area under graph} = \frac{1}{4}(f(1) + 2f(1.5) + f(2))$	$\int (x) - 3e^{-1} (-\cos \frac{1}{4}) + \frac{1}{4} + c$	f(1) = 1 + 3 = 4
f(2) = 4 + 3 = 7 ∴ Area under graph = $\frac{1}{4}(f(1) + 2f(1.5) + f(2))$	$f(x) = -12e^{\pi}\cos\frac{x}{2} + c$	f(1.5) = 2.25 + 3 = 5.25
	4	f(2) = 4 + 3 = 7
: Area under graph = $\frac{1}{4}(4+10.5+7) = 5.375$: Area under graph = $\frac{1}{4}(f(1) + 2f(1.5) + f(2))$
		: Area under graph = $\frac{1}{4}(4+10.5+7) = 5.375$

Question 22 B	Question 23 D
$\int_{a}^{a} e^{2x} dx = 21623.037$	$\sum \Pr = 1$
$\frac{1}{3}$	$\therefore b = 1 - (0.2 + 0.3 + 0.1)$
$\frac{1}{2}e^{2x}]_3^a = 21623.037$	$\therefore b = 1 - 0.6$
	$\therefore b = 0.4$
$\frac{1}{2}[e^{2a} - e^6] = 21623.037$	$\mu = \sum x \Pr(X = x) = 1.2$
$e^{2a} - e^{6}$] = 43246.074	$\therefore -0.4 - 0.3 + 0.4a + 0.1a + 0.4 = 1.2$
$e^{2a} = 43246.074 + e^{6}$	$\therefore 0.5a = 1.5$
$e^{2a} = 43649.50279$	$\therefore a = 3$
$2a = \log_e 43649.50279$	
2a = 10.684	
<i>a</i> = 5.3	
Question 24 C $x - \mu$	Question 25 C Without replacement, hypergeometric
$Z = \frac{x - \mu}{\sigma}$	Pr at least one green $=$ Pr 1 is green
$1.5 = \frac{a - 10}{4}$	or Pr 2 are green
	$\Pr(x=1) + \Pr(x=2)$
6 = a - 10 $a = 16$	$=\frac{\binom{2}{1}\binom{4}{1}}{\binom{6}{2}} + \frac{\binom{2}{2}\binom{4}{0}}{\binom{6}{2}}$
Question 26 A	= 0.6 Question 27 D
	Binomial
$\sigma = \frac{1}{2}$	p = 0.4
	<i>q</i> = 0.6
3 4	<i>n</i> = 3
	<i>x</i> = 1
	$\Pr(X=1) = \binom{3}{1} (0.4)^1 (0.6)^2$
$\Pr(X > 4) = \Pr(Z > 2) \qquad \qquad Z = \frac{x - \mu}{\sigma}$	$\Pr(X=1) = 0.43$
$Pr(X > 4) = Pr(Z > 2) \qquad Z = \frac{x - \mu}{\sigma}$ $Pr(X > 4) = 1 - Pr(Z < 2) \qquad Z = \frac{4 - 3}{\frac{1}{2}} = 2$	
$\Pr(X > 4) = 1 - 0.9772$	
$\Pr(X > 4) = 0.0228$	
$\Pr(X > 4) = 2.28\%$	

Page 6

Question 1	Question 2
$2x - 3 \ge 0$ $\therefore 2x \ge 3$ $\therefore x \ge \frac{3}{2}$ $\therefore \text{ Domain } [\frac{3}{2}, \infty) \qquad (1 \text{ mark})$ When $x = \frac{3}{2}$ $f(x) = -\frac{1}{2} \times 0 + 4 = 4$ When $x \to \infty$ $f(x) \to 4 - a$ very large number $\therefore f(x) \to -\infty$ Range(- ∞ , 4] (1 mark)	$\frac{\log_a \frac{16}{2}}{\log_a 2} = \frac{\log_a 8}{\log_a 2} \qquad (1 \text{ mark})$ $= \frac{\log_a 2^3}{\log_a 2}$ $= \frac{3\log_a 2}{\log_a 2}$ $= 3 \qquad (1 \text{ mark})$
Question 3 $x = \frac{25}{7}$	Question 4 a. $f(x) = 3\sin(\frac{1}{3}x)$ $f^{1}(x) = 3 \times \frac{1}{3}\cos(\frac{1}{3}x)$
Using Pythagorean triad 7:24:25 x = 24 θ is in the 4 th quadrant \therefore tan θ is negative (1 mark) 24	$= \cos(\frac{x}{3})$ (1 mark) b. Minimum value of $3\sin(\frac{x}{3})$, from the amplitude would be -3 (1 mark)
$\therefore \tan \theta = -\frac{24}{7} \qquad (1 \text{ mark})$ Question 4 b.(continued) $3\sin(\frac{x}{3}) = -3$ $\sin(\frac{x}{3}) = -1 \qquad 0 \le x \le 8\pi$ $0 \le \frac{x}{3} \le \frac{8\pi}{3}$	would be -3 (1 mark) Question 5 a. $\frac{dy}{dx} = -8(3-2x) \times (-2)$ $\frac{dy}{dx} = 16(3-2x) = 0$ for turning point $\Rightarrow (3-2x) = 0$ $\Rightarrow x = \frac{3}{2}$
$\frac{x}{3} = \frac{3\pi}{2}$ $x = \frac{9\pi}{2}$ (1 mark) Minimum is -3 when $x = \frac{9\pi}{2}$	When $x = \frac{3}{2}$ $y = 5 - 4(3 - 3)^2$ $\Rightarrow y = 5 - 0 = 5$ Turning point is $(\frac{3}{2}, 5)$ (1 mark)

Question 5	Question 6
b.	a.
$y = -4(3-2x)^2 + 5$	$E(x) = \sum x \Pr(X = x)$ = $\frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6}$
Graph of $y = x^2$ is translated $\frac{3}{2}$ units to the	
right parallel to the x axis. (1 mark)	$=\frac{21}{6}$
It is translated 5 units up parallel to the y axis	= 3.5 (1 mark)
(1 mark)	
It is reflected in the <i>y</i> axis because of the	
minus sign in front of the equation (1 mark)	
It is dilated by a factor of 16 in the y	
direction(because of the $-4 \times (-2)^2$ which	
is the coefficient of x^2 in the expansion	
(1 mark)	
Question 6	Question 7
b.	Sampling without replacement is hypergeometric
95% confidence limits: $\mu \pm 2\sigma$	Pr(X < 2) = Pr(x = 0) + Pr(X = 1) (1 mark)
$\sigma = \sqrt{x^2 p(x) - \mu^2}$	(6)(24) $(6)(24)$
$x^{2}p(x) = \frac{1}{6} + \frac{4}{6} + \frac{9}{6} + \frac{16}{6} + \frac{25}{6} + \frac{36}{6}$	$\Pr(X < 2) = \frac{\begin{pmatrix} 0 & 24 \\ 0 & 10 \end{pmatrix}}{\begin{pmatrix} 30 \end{pmatrix}} + \frac{\begin{pmatrix} 0 & 24 \\ 1 & 9 \end{pmatrix}}{\begin{pmatrix} 30 \end{pmatrix}} (1 \text{ mark})$
$x^2 p(x) = \frac{91}{6} = 15.1667$	(10) (10)
$\sigma = \sqrt{15.1667 - 12.25} = 1.708 \qquad (1 \text{ mark})$	Pr(X < 2) = 0.3264 to four decimal places
$2\sigma = 3.42$	(1 mark)
$\mu \pm 2\sigma = 3.5 \pm 3.42$	
$0.08 \le \mu \le 6.92$	
$0.1 \le \mu \le 7.0$ (1 mark)	

Question 8	Question 8	
a.	b.	
$y = e^{\cos x}$ Let $u = \cos x$ $\frac{du}{dx} = -\sin x$ $y = e^{u}$ $\frac{dy}{du} = e^{u}$ $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ $\frac{dy}{dx} = e^{u}(-\sin x)$	b. $\int -\sin x e^{\cos x} dx = e^{\cos x} + c \text{ where } c \text{ is a constant}$ $\int \sin x e^{\cos x} dx = -e^{\cos x} - c (1 \text{ mark})$ $\therefore \int_{0}^{\frac{\pi}{2}} \sin x e^{\cos x} dx = -e^{\cos x}]_{0}^{\frac{\pi}{2}}$ $\therefore \int_{0}^{\frac{\pi}{2}} \sin x e^{\cos x} dx = (-e^{\cos \frac{\pi}{2}}) - (-e^{\cos 0})$ $\therefore \int_{0}^{\frac{\pi}{2}} \sin x e^{\cos x} dx = -e^{0} + e^{1} = e - 1 (1 \text{ mark})$	
$\frac{dy}{dx} = -\sin x e^{\cos x} \qquad (1 \text{ mark})$		

END OF SUGGESTED SOLUTIONS 2003 Mathematical Methods Trial Examination 1

KILBAHA PTY LTD (Publishers in Education)	TEL: (03) 9817 5374
ABN 47 065 111 373	FAX: (03) 9817 4334
PO BOX 227 KEW VIC 3101 AUSTRALIA	chemas@chemas.com