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Question 1   D

Amplitude of  is 4

This graph has a maximum of 4 and a 

minimum of - 4.  

When  the graph has a 

maximum of 4 -1 3 and a minimum of

-4 -1 -5
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Question 2   C

When    which is true for A,C and E

Looking only at A,C and E,
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Question 4   A
This is a sin or cos graph.
Maximum = 4
Minimum = -2

\ Amplitude = 3 (midway between -2 and 4)

Graph has been translated up 1 so +1 on end.

Period = p = 
2p
n

\ n = 2

Phase shift is 
p
4

 to the right, \ (x -  
p
4

)

The graph without the phase shift would have
had a maximum when x = 0, \ cos graph.

Question 5   E
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Question 6   B
log ( ) log ( )
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Question 7   E

If g(x) is [-4,0) then f(x) is [-4,0)

If g(x) is [-4,4] then f(x) is [-4,4]

If g(x) is (0,4) then f(x) is (0,4)
If g(x) is (-4,0] then f(x) is (-4,0]

If g(x) is (0,6] then f(x) is (0,4]

Question 8   C

The graph of  is reflected in the  axis to 

give   It is translated 2 units to the right to

give   It is dilated by a factor  to

give 

When  

 which means the original graph has

 been reflected in the  axis, translated 2 units

to the right parallel to the  axis and dilated by

 a factor of 2  
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Question 9   C

For this many-one function to have an inverse
that is also a function, it must have its domain
restricted so that it is a one-one function.  This
can be done by restricting the domain from the
axis of symmetry, which in this case is
x = 0.
\[0,3] which means a = 0

Question 10   C

Asymptote for y = bex  is y = 0
 \ asymptote for y = bex + a  is y = a

Asymptote on the given graph is y = -6

\ a = -6

When x = 0, y = a + b = 1 from graph
\ b = 7

-4 4
h(x)
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Question 11   C
Let 

 or 

But 
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Question 12   E
Equation of graph is of the form
y = k(x - a)(x - b)(x - c)2

When x = 0,  y < 0
\ k is negative and could be -1

\ y =-(x - a)(x - b)(x - c)2

\ y =-(x - b)(x - a)(x - c)2

\ y =(b - x)(x - a)(x - c)2

\ y =(x - a) (b - x)(x - c)2

Question 13   D
Let 
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Question 14   B
Gradient of curve at point of tangency = gradient
of tangent line = 1
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Question 16   B
Graph of f(x) has gradient =0 when x = 2 and
when x = 4
For 0 < x < 4 except when x = 2, y = f(x) is an
increasing graph, hence the gradient, i.e. f x'( )
is greater than 0 in this region.

Question 15   B
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Question 17   B

The derivative does not exist at x = 2 or at
x = -1, or at x = 4

\ domain of f x R1 1 2 4( ) \ { , , }= -
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 turning points exist at and 
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Question 21   D
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Question 22   B
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Question 23   D
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Question 25   C
Without replacement, hypergeometric
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Question 27   D
Binomial
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Question 1
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Using Pythagorean triad 7:24:25
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Question 5
b.
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Question 8
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