2003 Mathematical Methods Written Examination 1 (facts, skills and applications) Suggested answers and solutions

Answers – Multiple Choice									log ₃
1.	D	2. B	3. C	4.	D	5.	Ε		log ₃
6.	С	7. B	8. B	9.	D	10.	Α		$3 = (x^2 - x^2)$
11.	С	12. E	13. A	14.	В	15.	Α		x = (x - x)
16.	Α	17. D	18. B	19.	В	20.	D		x = 3
21.	Ε	22. E	23. D	24.	D	25.	Α	7	
26.	D	27. C							
		2							X=0
1 Period = $\frac{2\pi}{n} = \frac{\pi}{2}$, amplitude = 3 [D]									x = 0
2 Only 1 solution in the domain [B]									OR
3			Alge						
0			$2e^{x}$ –						
$\left[-a\cos(\theta) + b\sin(\theta)\right]_0^{\frac{\pi}{3}}$									$2e^{2x}$
	- 0]		Let <i>a</i> 2 <i>a</i> ² -						
			(2a + a) = 1						
	[C]		u = 1 $e^{\chi} =$						
4	cos(1	$(\pi + x) + \sin(x)$	$\left(\frac{\pi}{2}-x\right) = -$	$\cos(x)$	+ co	os(x)			x = 0
	, , , , , , , , , , , , , , , , , , ,	,	(2) = 0				[D]		
5	Gene	ral term is	${}^{5}C_{r}(a)^{5-r}(-$	$-x^3$) ^r					
to find the term x^6 , $r = 2$									
	$::^{5}C_{2}$	$(a)^{5-2}(-x^3)$	$)^2$						
	= 10a	$x^{3}x^{6}$							
	The c	coefficient c	of x^6 is $10a^3$				[E]		

$$5 \quad \log_3(x-2) + \log_3(x) - 1 = 0$$

$$\log_3(x-2)x = 1$$

$$3 = (x-2)x$$

$$x^2 - 2x - 3 = 0$$

$$(x-3)(x+1) = 0$$

$$x = 3 \text{ since } x > 2.$$
[C]

$$x = 0$$

Igebraic Solution

$$2e^{x} - 1 = \frac{1}{e^{x}}$$

$$2e^{2x} - e^{x} - 1 = 0$$
Let $a = e^{x}$

$$2a^{2} - a - 1 = 0$$

$$(2a + 1)(a - 1) = 0$$

$$a = 1 \text{ or } a = -\frac{1}{2}$$

$$e^{x} = 1, \ e^{x} = -\frac{1}{2} \text{ no solution}$$

$$x = 0$$
[B]

 $2^{2x} + 2^x + b = 0$ 8 Let $a = 2^x$ $a^2 + a + b = 0$ $a = \frac{-1 \pm \sqrt{1 - 4b}}{2}$ If $2^x = \frac{-1 - \sqrt{1 - 4b}}{2}$ no solution If $2^x = \frac{-1 + \sqrt{1 - 4b}}{2}$ there will be one solution if $\sqrt{1-4b} > 1$ 1 - 4b > 1-4b > 0b < 0**[B]** The domain is $(3, \infty)$. $f(3) = 2\sqrt{15 - 3} + 6$

$$= 2\sqrt{12} + 6$$

9

 $=4\sqrt{3}+6$

Hence the range is

$$(4\sqrt{3} + 6, \infty)$$
 [D]

10 $y = x^3 e^x + 1$ translated -1 unit parallel to the *x*-axis becomes $y = (x+1)^3 e^{(x+1)} + 1.$ $y = (x + 1)^3 e^{(x + 1)} + 1$ dilated a factor of 2 from the *x*-axis becomes $y = 2(x + 1)^3 e^{(x + 1)} + 2$. [A]

11
$$g(x) = f(2x) = \frac{5}{2-2x} + 3$$

 $2 - 2x \neq 0$
 $x \neq 1$
The restricted domain is
 $(-\infty, 1)$ [C]

 $f(x) = -e^{2(x-1)} + 4$ has one asymptote at y = 4 and crosses both axes. Hence $f^{-1}(x)$ has one asymptote at x = 4and crosses both axes.

13
$$y = \frac{1}{x^2}$$
 has been reflected in the *x*-axis,
then translated *a* units parallel to the
x-axis and *b* units parallel to the *y*-axis.

$$y = \frac{-1}{(x-a)^2} + b$$
 [A]

14

18
$$f(x + h) \approx f(x) + h f'(x)$$

 $f(x) = \frac{1}{\sqrt{x}}$
Note: $\frac{1}{\sqrt{99.96}} = \frac{1}{\sqrt{100 - 0.04}}$
 $f(100) = \frac{1}{\sqrt{100}} = \frac{1}{10}$
 $f'(x)^{=} -\frac{1}{\frac{3}{2x^{2}}}$
 $f'(100) = -\frac{1}{\frac{3}{2 \times 100^{2}}} = -\frac{1}{2000}$
 $f(x + h) \approx f(x) + h f'(x)$
 $\approx \frac{1}{10} - 0.04 \times -\frac{1}{2000}$ [B]
19 $f(x) = (x - 3)^{2}x$
 $h'(x) = f(x)$
 $f(x) < 0$ when $x < 0$.

$$(-\infty, 0)$$
 [B]

20 For A, B and C the graphs are above the *x*-axis and as *x* increases *y* increases. Hence, the right rectangle rule will give an overestimate.
D and E are below the *x*-axis. The right rectangle rule will give an underestimate if as *x* increases *y* increases. [D]

21
$$\int \frac{4x^5}{x^6 + 7} dx$$
$$= \frac{4}{6} \int \frac{6x^5}{x^6 + 7} dx$$
$$= \frac{4}{6} \log_e(x^6 + 7) + c$$

$$= \frac{2}{3} \log_e(x^6 + 7) + c$$

Thus $\frac{2}{3} \log_e(x^6 + 7) + 3$ is an

antiderivative.

22
$$\int_{1}^{\frac{3}{2}} a(2x-3)^{4} dx = 10$$
$$\left[\frac{a(2x-3)^{5}}{10}\right]_{1}^{\frac{3}{2}} = 10$$
$$0 - \frac{-a}{10} = 10$$
$$a = 100$$
[E]

23 The area is below the *x*-axis between *a* and *b*.

$$-\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$$

The area is above the *x*-axis between *b* and *c*.

The total area is
$$\int_{b}^{a} f(x)dx + \int_{b}^{c} f(x)dx$$
 [D]

= 4

24 InvNorm(0.734, 3, 1.6)

25
$$Pr(at least one fails) = Pr(X \ge 1)$$

$$= 1 - \Pr(X = 0)$$

= 1 - 0.95¹⁰ [A]

26 N = 15, n = 3, D = 3, x = 1

[E]

$$\frac{{}^{12}C_2{}^3C_1}{{}^{15}C_3} = \frac{12 \times 11 \times 3}{5 \times 14 \times 13}$$
 [D]

27
$$z = \frac{x - \mu}{\sigma} = \frac{1.2 - 5.6}{6.5}$$

 ≈ -0.677 [C]

© The Mathematical Association of Victoria, 2003

Solutions (short answer)

		, , ,		
1	1 -	$+\sin(x) = 2\cos^2(x)$		[1M]
	1 -	$+\sin(x) = 2(1 - \sin^2(x))$		
	2s	$\sin^2(x) + \sin(x) - 1 = 0$		
	(29	$\sin(x) - 1)(\sin(x) + 1) = 0$		[1M]
	<i>x</i> =	$=\frac{\pi}{6},\frac{5\pi}{6},\frac{3\pi}{2}$		[2A]
2	а	Asymptote $y = -3$		[1A]
		Intercepts(2, 0) (0, $\frac{3}{e^2} - 3$))	[1A]
		Shape		[1A]
		<i>y</i> ↑		
		3 -	g(x)	
		2 -		
		1 -		

b (-0.98, -2.85) and (1.32, -1.48)

c
$$\int_{-0.9766235}^{1.3227674} (f(x) - g(x))dx$$
 [1M]

 ≈ 0.99 units squared [1A]

3 a
$$f(x) = (2x - 1)^3(x + 2)$$

 $f'(x) = 6(2x - 1)^2(x + 2) + (2x - 1)^3$,
by the product rule. [1A]

b
$$f'(x) = (2x - 1)^2(6(x + 2) + (2x - 1))$$

= $(2x - 1)^2(8x + 11)$ [1M]
= $(2x - 1)^2(8x + 11) = 0$

at a stationary point.

$$x = \frac{1}{2}$$
 or $x = -\frac{11}{8}$

c
$$f(\frac{1}{2}) = 0$$
 and $f(-\frac{11}{8}) = -\frac{16875}{512}$ [2M]

Average rate of change =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

= $\frac{-\frac{16875}{512} - 0}{-\frac{11}{8} - \frac{1}{2}}$ [1A]
= $\frac{1125}{64}$

[1M]

a
$$y = x^2 \log_e x$$

$$\frac{dy}{dx} = 2x \log_e(x) + \frac{x^2}{x}, \text{ by the product rule}$$

$$= 2x \log_e(x) + x \qquad [1 \text{ A}]$$
b $\int (2x \log_e(x) + x) dx = x^2 \log_e x + c \qquad [1 \text{ M}]$

$$\int (2x\log_e(x))dx + \int (x)dx = x^2\log_e x + c,$$

where

4

$$\int (2x \log_e(x)) dx = x^2 \log_e x - \frac{x^2}{2} + k,$$

where *k* is a constant. [1A]

5 Company X:
$$Pr(block \ge 750) = 0.9234$$
[1A]Company Y: $Pr(block \ge 750) = 0.9007$ [1A]More likely Company X[1A]