2003 Mathematical Methods Written Examination 1 (facts, skills and applications) **Suggested answers and solutions**

$$
\log_3(x-2) + \log_3(x) - 1 = 0
$$

\n
$$
\log_3(x-2)x = 1
$$

\n
$$
3 = (x-2)x
$$

\n
$$
x^2 - 2x - 3 = 0
$$

\n
$$
(x-3)(x+1) = 0
$$

\n
$$
x = 3 \text{ since } x > 2.
$$
 [C]

$$
x = 0
$$

ebraic Solution

$$
2e^{x} - 1 = \frac{1}{e^{x}}
$$

\n
$$
2e^{2x} - e^{x} - 1 = 0
$$

\nLet $a = e^{x}$
\n
$$
2a^{2} - a - 1 = 0
$$

\n
$$
(2a + 1)(a - 1) = 0
$$

\n $a = 1$ or $a = -\frac{1}{2}$
\n $e^{x} = 1$, $e^{x} = -\frac{1}{2}$ no solution
\n $x = 0$ [B]

8 $2^{2x} + 2^x + b = 0$ Let $a = 2^x$ $a^2 + a + b = 0$ $a =$ $-1 \pm \sqrt{1-4}$ 2 *b* If 2^x = $-1 - \sqrt{1} - 4$ 2 *b* no solution If 2^x = $-1 + \sqrt{1} - 4$ 2 *b* there will be one solution if $\sqrt{1 - 4b} > 1$ $1 - 4b > 1$ $-4b > 0$ $b < 0$ [B] **9** The domain is $(3, \infty)$. $f(3) = 2\sqrt{15 - 3} + 6$ $= 2\sqrt{12} + 6$

$$
=4\sqrt{3}+6
$$

Hence the range is

$$
(4\sqrt{3} + 6, \infty) \tag{D}
$$

10 $y = x^3e^x + 1$ translated -1 unit parallel to the *x*-axis becomes

$$
y = (x + 1)^{3}e^{(x + 1)} + 1.
$$

\n
$$
y = (x + 1)^{3}e^{(x + 1)} + 1 \text{ dilated a factor}
$$

\nof 2 from the *x*-axis
\nbecomes $y = 2(x + 1)^{3}e^{(x + 1)} + 2.$ [A]

11
$$
g(x) = f(2x) = \frac{5}{2 - 2x} + 3
$$

\n $2 - 2x \neq 0$
\n $x \neq 1$
\nThe restricted domain is
\n $(-\infty, 1)$ [C]

 $f(x) = -e^{2(x-1)} + 4$ has one asymptote at $y = 4$ and crosses both axes. Hence $f^{-1}(x)$ has one asymptote at $x = 4$ and crosses both axes. **[E]**

13
$$
y = \frac{1}{x^2}
$$
 has been reflected in the *x*-axis,
then translated *a* units parallel to the *x*-axis and *b* units parallel to the *y*-axis.

$$
y = \frac{-1}{(x - a)^2} + b
$$
 [A]

14

 $=(x-1)^2(x+1)^2$ [B]

18
$$
f(x + h) \approx f(x) + h f'(x)
$$

\n $f(x) = \frac{1}{\sqrt{x}}$
\nNote: $\frac{1}{\sqrt{99.96}} = \frac{1}{\sqrt{100 - 0.04}}$
\n $f(100) = \frac{1}{\sqrt{100}} = \frac{1}{10}$
\n $f'(x) = -\frac{1}{\frac{3}{2x^2}}$
\n $f'(100) = -\frac{1}{\frac{3}{2 \times 100^2}} = -\frac{1}{2000}$
\n $f(x + h) \approx f(x) + h f'(x)$
\n $\approx \frac{1}{10} - 0.04 \times -\frac{1}{2000}$ [B]
\n19 $f(x) = (x - 3)^2 x$
\n $h'(x) = f(x)$
\n $f(x) < 0$ when $x < 0$.

\n- $$
(-\infty, 0)
$$
\n- **[B]**
\n- **20** For **A**, **B** and **C** the graphs are above the *x*-axis and as *x* increases *y* increases. Hence, the **right** rectangle rule will give an overestimate.
\n

 D and E are below the *x*-axis. The right rectangle rule will give an underestimate if as x increases *increases.*

21
$$
\int \frac{4x^5}{x^6 + 7} dx
$$

= $\frac{4}{6} \int \frac{6x^5}{x^6 + 7} dx$
= $\frac{4}{6} \log_e (x^6 + 7) + c$
= $\frac{2}{3} \log_e (x^6 + 7) + c$
Thus $\frac{2}{3} \log_e (x^6 + 7) + 3$ is an

antiderivative.

22
$$
\int_{1}^{\frac{3}{2}} a(2x-3)^{4} dx = 10
$$

$$
\left[\frac{a(2x-3)^{5}}{10} \right]_{1}^{\frac{3}{2}} = 10
$$

$$
0 - \frac{-a}{10} = 10
$$

$$
a = 100
$$
[E]

23 The area is below the x -axis between a and b .

$$
-\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx
$$

The area is above the *x*-axis between b and c .

The total area is
$$
\int_b^a f(x)dx + \int_b^c f(x)dx
$$
 [D]

24 InvNorm(0.734, 3, 1.6)

$$
=4
$$
 [D]

25 Pr(at least one fails) =
$$
Pr(X \ge 1)
$$

-1 $Pr(Y = 0)$

$$
= 1 - Pr(X = 0)
$$

= 1 - 0.95¹⁰ [A]

26 $N = 15$, $n = 3$, $D = 3$, $x = 1$

 $[D]$

 $[E]$

$$
\frac{^{12}C_2{}^3C_1}{^{15}C_3} = \frac{12 \times 11 \times 3}{5 \times 14 \times 13}
$$
 [D]

27
$$
z = \frac{x - \mu}{\sigma} = \frac{1.2 - 5.6}{6.5}
$$

\n ≈ -0.677 [C]

© The Mathematical Association of Victoria, 2003

Solutions (short answer)

b $(-0.98, -2.85)$ and $(1.32, -1.48)$

$$
[2A]
$$

c
$$
\int_{-0.9766235}^{1.3227674} (f(x) - g(x)) dx
$$
 [1M]

 ≈ 0.99 units squared **[1A]**

3 **a**
$$
f(x) = (2x - 1)^3(x + 2)
$$

\n $f'(x) = 6(2x - 1)^2(x + 2) + (2x - 1)^3$,
\nby the product rule. [1A]

b
$$
f'(x) = (2x - 1)^2(6(x + 2) + (2x - 1))
$$

= $(2x - 1)^2(8x + 11)$ [1M]
= $(2x - 1)^2(8x + 11) = 0$

at a stationary point. **[1M]**

$$
x = \frac{1}{2} \text{ or } x = -\frac{11}{8}
$$

c
$$
f(\frac{1}{2}) = 0
$$
 and $f(-\frac{11}{8}) = -\frac{16875}{512}$ [2M]

Average rate of change =
$$
\frac{y_2 - y_1}{x_2 - x_1}
$$

$$
= \frac{\frac{16875}{512} - 0}{-\frac{11}{8} - \frac{1}{2}} \quad \text{[1A]}
$$

$$
= \frac{1125}{64}
$$

4 **a**
$$
y = x^2 \log_e x
$$

\n
$$
\frac{dy}{dx} = 2x \log_e(x) + \frac{x^2}{x}, \text{ by the product rule}
$$
\n
$$
= 2x \log_e(x) + x \qquad \qquad [1 \text{ A}]
$$
\n
$$
\text{b} \quad \int (2x \log_e(x) + x) dx = x^2 \log_e x + c \qquad \qquad [1 \text{ M}]
$$

$$
\int (2x \log_e(x))dx + \int (x)dx = x^2 \log_e x + c,
$$

where

$$
\int (2x \log_e(x))dx = x^2 \log_e x - \frac{x^2}{2} + k,
$$

where *k* is a constant. [1A]

5 Company X: Pr(block ≥ 750) = 0.9234 **[1A]** Company Y: Pr(block ≥ 750) = 0.9007 **[1A]** More likely Company X **[1A]**