Multiple Choice Questions

Question 1

The function $f(x) = 3\cos(4(x - \pi))$ has a period and amplitude respectively of

A 3, $\frac{\pi}{4}$ B $\frac{\pi}{4}$, 3 C 3, $\frac{\pi}{2}$ D $\frac{\pi}{2}$, 3 E 4π , 3

Question 2

The solution(s) of sin(2x) = cos(2 - x), $x \in [0, \pi]$ is/are closest to

- **A** 1.19, 3.28
- **B** 1.19
- **C** 1.19, 2.78
- **D** 1.19, 3.28, 5.38, 5.83
- E 2.78

Question 3

 $\int_0^{\frac{\pi}{3}} (a\sin(\theta) + b\cos(\theta))d\theta \text{ equals}$

 $\mathbf{A} \qquad \frac{1}{2}(3a + \sqrt{3}b)$ $\mathbf{B} \qquad \frac{1}{2}(3a - \sqrt{3}b)$ $\mathbf{C} \qquad \frac{1}{2}(a + \sqrt{3}b)$ $\mathbf{D} \qquad \frac{1}{2}(a - \sqrt{3}b)$ $\mathbf{E} \qquad \frac{1}{2}(\sqrt{3}b - a)$

The value of $\cos(\pi + x) + \sin(\frac{\pi}{2} - x)$ when $\cos(x) = 0.7$ is

 A
 π + 0.7

 B
 π - 0.7

 C
 -1.4

 D
 0

 E
 1.4

Question 5

The coefficient of the term containing x^6 in the expansion of $(a - x^3)^5$ is

A $-a^{3}$ **B** a^{3} **C** $10a^{2}$ **D** $-10a^{3}$ **E** $10a^{3}$

Question 6

If $\log_3(x-2) + \log_3(x) - 1 = 0$ then *x* equals

A -1
B 1
C 3
D -1 or 3
E -3 or 1

Question 7

If
$$2e^{x} - 1 = \frac{1}{e^{x}}$$
 then x equals
A $-\frac{1}{2}$ or 1
B 0
C 1
D $\log_{e} \frac{1}{2}$
E $\log_{e} \frac{1}{2}$ or 1

 $2^{2x} + 2^x + b = 0$ has only one real solution if

A
$$b > 0$$

B $b < 0$
C $b \le 0$
D $b = \frac{1}{4}$ only
E $b = -\frac{1}{4}$ only

Question 9

The range of *f*: $(3, \infty) \rightarrow R$, where $f(x) = 2\sqrt{5x-3} + 6$ is

Α	(6 ,∞)
B	$\left[\frac{3}{5},\infty\right)$
С	R
D	$(4\sqrt{3}+6,\infty)$
Ε	$[4\sqrt{3}+6,\infty)$

Question 10

The graph of $y = x^3e^x + 1$ is translated -1 unit parallel to the *x*-axis and then dilated by a factor of 2 from the *x*-axis. The equation of the new graph is

A
$$y = 2(x + 1)^{3}e^{(x + 1)} + 2$$

B $y = 2(x + 1)^{3}e^{(x + 1)} + 1$
C $y = (\frac{1}{2}x + 1)^{3}e^{(\frac{1}{2}x + 1)} + 1$
D $y = 2(x - 1)^{3}e^{(x - 1)} + 2$
E $y = \frac{1}{2}(x + 1)^{3}e^{(x + 1)} + \frac{1}{2}$

Question 11

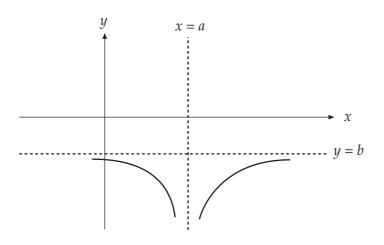
If $f: R \setminus \{2\} \to R$, $f(x) = \frac{5}{2-x} + 3$ then the largest possible value of *a* where $g: (-\infty, a) \to R$, g(x) = f(2x) is a one to one function is

A -2
B -1
C 1
D 2
E 3

The function *f* defined by $f: R \to R$, where $f(x) = -e^{2(x-1)} + 4$ will have an inverse function with

- A two asymptotes.
- **B** only one asymptote, y = 4 and only one intercept, $(0, 4 \frac{1}{e^2})$.
- **C** only one asymptote, x = 4 and only one intercept, $(4 \frac{1}{e^2}, 0)$.
- **D** only one asymptote, y = 4 and intercepts at $(0, 4 \frac{1}{\rho^2})$ and $(\frac{1}{2}\log_e(4) + 1, 0)$.
- **E** only one asymptote, x = 4 and intercepts at $(4 \frac{1}{\rho^2}, 0)$ and $(0, \frac{1}{2}\log_e(4) + 1)$.

Question 13



The rule for the above graph could be

A
$$y = \frac{-1}{(x-a)^2} + b$$

B $y = \frac{-1}{(x-a)^2} - b$
C $y = \frac{1}{(x-a)^2} + b$
D $y = \frac{-1}{(x+a)^2} + b$
E $y = \frac{-1}{(x+a)^2} - b$

The equation of the graph of the quartic function which passes through the points with coordinates (-1, 0), (0, 1), (1, 0), (2, 9) and (-2, 9) is

A $y = x^4 - 2x^3 + 1$ B $y = (x - 1)^2(x + 1)^2$ C $y = -x^4 + x^2 + 2x - 2$ D $y = -(x + 1)(x - 1)^3$ E $y = -(x - 1)(x + 1)^3$

Question 15

The **largest** instantaneous rate of change, correct to three decimal places, of the function $f(x) = (2x + 1)10^x$ with respect to *x* where $2x + 1 = 10^x$ is

A 4.303
B 4.302
C 2.719
D 0
E - 0.125

Question 16

If h(x) and g(x) are the tangents to the curve $f(x) = x^2 + 4x - 5$ where f(x) = 0, then h(x) = g(x) at

- A (-2, -18)
- **B** (-2, -9)
- **C** (-5, 1)
- **D** (-5, -6)
- E (-6, 6)

If
$$g(x) = \frac{\log_e(\cos x)}{\tan x}$$
 then $g'(x)$ equals
A $\frac{\tan^2(x) - \sec^2(x) \log_e(\cos x)}{\tan^2(x)}$
B $\frac{\tan^2(x) + \sec^2(x) \log_e(\cos x)}{\tan^2(x)}$
C $\frac{-\tan^2(x) + \sec^2(x) \log_e(\cos x)}{\tan^2(x)}$
D $-1 - \frac{\log_e(\cos x)}{\sin^2(x)}$
E $-1 - \frac{\log_e(\cos x)}{\tan^2(x)}$

Question 18

An approximate value for $\frac{1}{\sqrt{99.96}}$ is

$$A \qquad \frac{1}{10} + 0.04 \times \frac{-1}{2000}$$
$$B \qquad \frac{1}{10} - 0.04 \times \frac{-1}{2000}$$
$$C \qquad \frac{1}{10} - 0.04 \times \frac{-1}{20}$$
$$D \qquad \frac{1}{10} + 0.04 \times \frac{-1}{20}$$
$$E \qquad \frac{1}{10} - 0.4 \times \frac{-1}{2000}$$

Question 19

If $f(x) = (x - 3)^2 x$ and *h* is a function such that h'(x) = f(x), then the largest subset of *R* for which the gradient of h(x) is negative is

- $\mathbf{A} \quad (-\infty, 0) \cup (3, \infty)$
- **B** (-∞, 0)
- **C** (1, 3)
- **D** $(-\infty, 1) \cup (3, \infty)$
- $\mathbf{E} \qquad (0,3) \cup (3,\infty)$

Which of the following rules for f(x) will not give an overestimate of the area bounded by the graph of f(x) and the *x*-axis, if the **right** rectangle rule is used between x = 0 and x = 3 using strips of width 0.5?

A
$$f(x) = 10^{x}$$

B $f(x) = e^{x}$
C $f(x) = \sqrt{x}$
D $f(x) = (x - 3)(3 - x)$
E $f(x) = -x^{2}(x + 1)(x + 2)$

Question 21

An antiderivative of $\frac{4x^5}{x^6+7}$ could be

A $\log_e (x^6 + 7)$ B $4\log_e (x^6 + 7)$ C $\frac{2}{3}\log_e (x^6)$ D $\frac{3}{2}\log_e (x^6 + 7)$ E $\frac{2}{3}\log_e (x^6 + 7) + 3$

Question 22

If $\int_{1}^{\frac{3}{2}} a(2x-3)^{4} dx = 10$, where *a* is a constant, then *a* equals **A** -100 **B** -50 **C** 1 **D** 50 **E** 100



The area enclosed by the graph y = f(x) shown above and the *x*-axis can be determined by evaluating

$$A \qquad \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$
$$B \qquad \int_{a}^{b} f(x)dx + \int_{c}^{b} f(x)dx$$
$$C \qquad \int_{b}^{a} f(x)dx - \int_{b}^{c} f(x)dx$$
$$D \qquad \int_{b}^{a} f(x)dx + \int_{b}^{c} f(x)dx$$
$$E \qquad \int_{0}^{a} f(x)dx + \int_{0}^{b} f(x)dx - \int_{b}^{c} f(x)dx$$

Question 24

X is a normally distributed variable with μ = 3 and σ^2 = 2.56. If Pr(X < k) = 0.734, then *k* equals

- **A** 0.2
- **B** 1.4
- **C** 2.0
- **D** 4.0
- **E** 4.6

A fire alarm has a probability of failure of 0.05. In an apartment block where there are 10 such alarms. The probability that at least one fails is given by:

$$\begin{array}{lll} \mathbf{A} & 1-(0.95)^{10} \\ \mathbf{B} & 1-{}^{10}\,\mathbf{C}_1\,(0.05)^1(0.95)^9 \\ \mathbf{C} & 1-[{}^{10}\,\mathbf{C}_1\,(0.05)^1(0.95)^9+(0.95)^{10}\,] \\ \mathbf{D} & 1-[{}^{10}\,\mathbf{C}_9\,(0.05)^9(0.95)^1+(0.05)^{10}] \\ \mathbf{E} & 1-(0.05)^{10} \end{array}$$

Question 26

In a container of tulip bulbs there are 5 that have red flowers, 7 yellow and 3 orange. A group of three bulbs is chosen at random. The probability that exactly one of the flowers is orange is:

Α	$\frac{1}{5}$
В	$\frac{2}{5 \times 14 \times 13}$
С	$\frac{2\times3}{5\times14\times13}$
D	$\frac{12 \times 11 \times 3}{5 \times 14 \times 13}$
E	$\frac{12 \times 11}{5 \times 14 \times 13}$

Question 27

A normal distribution has μ = 5.6 and σ = 6.5. If the variable *x*, has a value of 1.2, the value of the normal variable *z*, is closest to:

Α	0.338

- **B** 0.786
- **C** 0.677
- **D** 0.677
- **E** 4.40

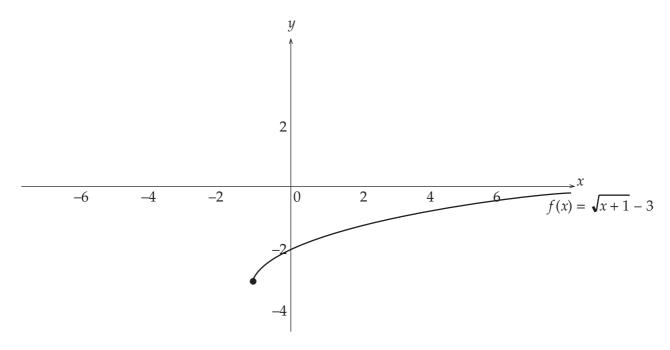
Part II: Short Answer

Question 1

Find exact solutions of $1 + \sin(x) = 2\cos^2(x)$ where $x \in [0, 2\pi]$.

Question 2

The graph of *f*: $[-1, \infty) \rightarrow R$, $f(x) = \sqrt{x+1} - 3$ is shown below.



- **a** Sketch $g: (-\infty, 3) \rightarrow R, g(x) = 3e^{(x-2)} 3$ on the above axes, labelling all relevant features of the graph.
- **b** Find the coordinates of the points where f(x) = g(x), correct to two decimal places.
- **c** Find the area bounded by the two curves, correct to two decimal places.

3 + 2 + 2 = 7 marks

Let $f(x) = (2x - 1)^3(x + 2)$. a Find f'(x).

b Hence show that the stationary points occur at $x = \frac{1}{2}$ and $x = -\frac{11}{8}$.

c Find the average rate of change of f(x) between the two stationary points.

1 + 2 + 3 = 6 marks

Question 4

a If $y = x^2 \log_e x$ find $\frac{dy}{dx}$.

b Hence find $\int 2x \log_e(x) dx$.

1 + 2 = 3 marks

Two chocolate companies make 750 gram blocks of milk chocolate. Company X's blocks have a mean of 760 and a standard deviation of 7, while Company Y's blocks have a mean of 768 and a standard deviation of 14.

Determine which company has the higher probability of producing a block that weighs at least 750 grams?

3 marks