2003 Mathematical Methods Written Examination 1 (facts, skills and applications) Suggested answers and solutions

Part 1 (Multiple-choice) Answers

1. D	2. B	3. B	4. D	5. E
6. A	7. C	8. D	9. D	10. C
11. C	12. A	13. A	14. E	15. E
16. C	17. E	18. A	19. E	20. C
21. A	22. E	23. D	24. D	25. B
26. B	27. B			

Part 1 (Multiple-choice) Solutions

Question 1

[D]

[D]

Because the graph touches the *x*-axis at x = 2 with a minimum value, there needs to be a factor of $(x - 2)^2$.

If x > 2, the graph is positive. The only alternative satisfying both of these conditions is D.

Question 2 [B]

If x = 2 then $\log_2 2$ is 1. All other alternatives are true.

Question 3 [B]

 $\frac{x^3 + 1}{x} = \frac{x^3}{x} + \frac{1}{x} = x^2 + \frac{1}{x}$ and so the two rules that could have been added are $g(x) = x^2$ and

 $h(x) = \frac{1}{x}.$

Question 4

The value of *P* in $y = e^{kx} + P$ represents the horizontal asymptote that the graph approaches as *x* tends to negative infinity (*k* is positive). Since it is positive, the horizontal asymptote must be above the *x*-axis.

The *y*-intercept is 1 unit (e^0) above

y = P

The graph also tends to ∞ as *x* increases.

Question 5

[E]

For reflection in the *y*-axis, change any *x* to -x.

Therefore \sqrt{x} becomes $\sqrt{-x}$.

A dilation factor of 2 from the *x*-axis doubles each

y-value. The new equation becomes $y = 2\sqrt{-x}$.

Question 6

[A]

[C]

[D]

[D]

Dividing both sides of $0.5 \cos(2x)=1$ by 0.5 gives $\cos(2x)=2$. There are no real solutions to this equation, regardless of the domain.

Question 7

The graph repeats itself after π . This can be seen from the difference of the *x*-intercepts .

Question 8

The period of the function is 4.

$$\therefore \frac{2\pi}{k\pi} = 4 \text{ and so } k = 0.5$$

The graph oscillates around y = 1 and so Q is 1. Substituting (-1, 3) into the equation gives

$$P\sin\left(\frac{-\pi}{2}\right) + 1 = 3$$

so -P + 1 = 3 giving P = -2.

Question 9

If
$$y = 2 \tan(2x)$$
 then $\frac{dy}{dx} = 4 \sec^2(2x)$

$$4 \sec^2(2x) = 4 \times \frac{1}{\cos^2(2x)}$$
$$= \frac{4}{\cos^2(2x)}$$

Ouestion 10

Using the Product Rule

$$\frac{dy}{dx} = u'(x) \log_{e}(x) + u(x) \cdot \frac{1}{x}$$

At $x = 2$ this becomes

 $\frac{dy}{dx} = u'(2)\log_{e}(2) + \frac{u(2)}{2}$

Ouestion 11

[**C**]

[C]

At x = -1 the graph has a stationary value because the gradient is zero. The gradient is positive on both sides of x = -1, that is , it does not change signs. It must be a stationary point of inflexion.

Ouestion 12

[A]

[E]

Since g'(x) = f(x) the curve of f(x) represents the gradient of g(x). On the interval (a, b) the curve of f(x) is negative. Hence the gradient of g(x) is negative in this interval.

[A] **Ouestion 13**

$$f(x) = \int 4e^{2x} dx$$

= $\frac{4}{2}e^{2x} + c$ where c is a constant.
= $2e^{2x} + c$

The first alternative satisfies this equation with c = 3.

Ouestion 14

The first integral can be divided in the following way:

$$\int_{1}^{4} (2f(x) + 3)dx = \int_{1}^{4} 2f(x)dx + \int_{1}^{4} 3dx$$

Now $\int_{1}^{4} 2f(x)dx = 2x \int_{1}^{4} f(x)dx = 4$
and $\int_{1}^{4} 3dx = [3x]_{1}^{4}$
 $= (12 - 3)$

The answer is therefore 4 + 9 = 13.

Question 15

$$\int_{0}^{5} g(x)dx = \int_{0}^{5} f'(x)dx$$

Now the integral of a derivative takes us back to the function itself and so the integral on the RHS

of this equation is $[f(x)]_{0}^{5}$, that is f(5) - f(0).

Question 16

[C]

The graph of $y = \sin(2x)$ between 0 and 2π is shown below. The area between 0 and $\pi/2$ has been highlighted and the value is 1.

The total area between 0 and 2π is therefore 4.

Ouestion 17

[E]

The left-rectangles are shown on the curve. From left to right, their heights are: $\sqrt{3}$, $\sqrt{2}$ and $\sqrt{1}$ respectively.

The widths are all 1 unit and so the area is $\sqrt{3} + \sqrt{2} + 1$

Question 18

[A]

 $f(x) = 2(x+3)^2 - 8$ is already written in turningpoint format. The co-ordinates of the minimum value is (-3, -8).

[E]

Question 19

The expansion of $(2x - 3)^5$ is: $(2x)^5 - {}^5C_1(2x)^4(3)^1 + {}^5C_2(2x)^3(3)^2 - {}^5C_3(2x)^2(3)^3 + \dots$

The last term here is the x^2 term and the coefficient is ${}^{5}C_{3}(2)^{2}(3)^{3} = -1080$.

Question 20

[C]

[A]

[E]

If *a* is a positive number then $x^2 + a$ will not reach the *x*-axis. Therefore, for y = 0 the values of *x* will be *c* and -b.

Question 21

f(x) has a vertical and horizontal asymptote of

x = 3 and y = 1 respectively.

Interchange the x and y variables to find the inverse function.

Therefore the inverse function has a vertical and horizontal asymptote of x = 1 and y = 3 respectively.

Question 22

[E]

[D]

 $2 \log_{e} (x) - \log_{e} (x + 2) = 1 + \log_{e} (y)$ $2 \log_{e} (x) - \log_{e} (x + 2) - 1 = \log_{e} (y)$ Now 1 = log_e e and 2log_e (x) = log_e x² and so $\log_{e} (y) = \log_{e} x^{2} - \log_{e} (x + 2) - \log_{e} e$

$$\log_{e} (y) = \log_{e} \frac{x^{2}}{e(x+2)}$$
$$\therefore \quad y = \frac{x^{2}}{e(x+2)}$$

Question 23

Normal distributions are symmetrical about the mean. Both of these are symmetrical about the same line and so $\mu_1 = \mu_2$.

 X_2 is wider than X_1 and so $\sigma_1 < \sigma_2$.

Question 24

[D]

[B]

[B]

[B]

Probability distribution functions must have both of the following properties:

 Σ Pr(X) = 1 and $0 \le Pr(X) \le 1$.

Alternative I has probabilities adding to 1.2 and Alternative IV has negative probabilities. The rest fulfil the requirements.

Question 25

Var (X) = E (X²) – $[E(X)]^2$ and the standard deviation is $\sqrt{(\text{Variance})}$.

$$E(X) = 1 - p \text{ and } E(X^2) = 1^2(1 - p).$$

$$\therefore Var(X) = 1 - p - (1 - p)^2$$

$$= 1 - p - (1 - 2p + p^2)$$

$$= p - p^2$$

$$= p (1 - p)$$

The standard deviation is $\sqrt{p(1-p)}$.

Question 26

Binomial distribution.

n = 20 and p = 0.6Pr (x =12) = ${}^{20}C_{12}$ (0.6) 12 (0.4) 8

Question 27

Hypergeometric distribution.

$$N = 12, D = 4, n = 2$$

Pr(At least 1 multigrain) is the same as 1 – Pr (0 multigrain)

Pr (0 multigrain) means that both rolls chosen are white.

$$\Pr(\text{ Both white}) = \frac{{}^{8}C_{2}}{{}^{12}C_{2}}.$$

The answer is
$$1 - \frac{{}^{8}C_2}{{}^{12}C_2}$$
.

PART II

Question 1

If the polynomial is divisible by the factor (x + 1) then f(-1) = 0.

$$f(-1) = 2((-1)^4 - 3(-1)^3 + 7(-1) + 11$$
$$= 2 + 3 - 7 + 11$$
$$= 9$$

It is not divisible by this factor (x + 1).

Question 2

a The point on the curve is where the gradient is 3 since it is parallel to the given straight line.

$$\frac{dy}{dx} = 2x - 2 = 3$$

Therefore $x = 2.5$
 $y = (2.5)^2 - 2(2.5) - 1 = 0.25$.
Point P is (2.5, 0.25).

b The gradient of the normal = $-\frac{1}{3}$ as the product of the gradients of the normal and tangent is -1.

Equation:
$$y - 0.25 = -\frac{1}{3}(x - 2.5)$$

Answer: $12y + 4x = 13$

Question 3

 $\sin (2\pi x) = -\sqrt{3} \cos(2\pi x)$ Dividing both sides by $\cos (2\pi x)$ gives:

tan $(2\pi x) = -\sqrt{3}$ for $0 \le x \le 1$. Tan is negative in the 2nd and 4th quadrants.

Hence
$$2\pi x = \pi - \frac{\pi}{3}$$
 and $2\pi - \frac{\pi}{3}$
 $2\pi x = \frac{2\pi}{3}$ and $\frac{5\pi}{3}$

$$x = \frac{1}{3}$$
 and $\frac{5}{6}$

Question 4

- a When y = 0: $2 \log_e(a + 3) = -1$ $a + 3 = e^{-0.5}$ $a = e^{-0.5} - 3$ When x = 0: $b = 2\log_e 3 + 1$
- **b** The vertical asymptote below must be labelled with its equation: x = -3 and the two intercepts should be labelled with their co-ordinates

$$(0, 2\log_e 3 + 1)$$
 and $(e^{-0.5} - 3, 0)$

c The derivative function is shown below. Two asymptotes need to have their equations placed on the graph: vertical asymptote x = -3 and horizontal asymptote y = 0. The *y*-intercept has co-ordinates $(0, \frac{2}{3})$

Question 5

a Solving the intersection of

 $y_1 = -x + 1$ and $y_2 = 1 - e^{-x}$

on the graphics calculator gives the *x* value of 0.567 to three decimal places.

$$\mathbf{b} \quad \int_{0}^{0.567} (-x+1) - (1-e^{-x})dx$$
$$= \quad \int_{0}^{0.567} (e^{-x} - x)dx$$
$$= \quad \left[-e^{-x} - \frac{x^2}{2} \right]_{0}^{0.567}$$

= 0.272

The answer is 0.27 to two decimal places.

Question 5

a Normalcdf (-E99,10,20,5) = 0.0228

Normalcdf (10,30,20,5) = 0.9545

Normalcdf (30,E99,20,5) = 0.0228

give the proportions for small, medium and large respectively.

b Expected cost per plant is found from multiplying the proportions by the item costs:

$$= \$1.50 \times 0.0228 + \$2.50 \times 0.9545 + \$4.00 \times 0.0228$$

```
= $2.5115
```

The expected cost of 100 plants is: 2.5115×100

= \$ 251 to the nearest dollar.