2003 Mathematical Methods Written Examination 2 (analysis task) Suggested answers and solutions

Question 1

a Using the normal cdf distribution program on the graphics calculator gives:
 normalcdf (141.5, ∞, 140, 1.2) = 0.106 to three decimal places.

(Note: Be sure to write down what values were put into the calculator as any question worth two marks or more requires working to be shown, as well as the answer.)

b *d* cm either side of the mean indicates that area greater than (140 + d) and less than (140 - d) are both 0.075.

Invnorm (0.075, 140, 1.2) = 138.27

:.
$$d = 140 - 138.27$$

= 1.7 cm (correct to one decimal place).

c The Binomial distribution here is $(0.15 + 0.85)^{12}$ with the probability that a rod is faulty being 0.15.

Pr (X = 2) = ${}^{12}C_2 (0.15)^2 (0.85)^{10}$ = 0.292 (correct to three decimal places).

d Hypergeometric distribution with N = 25, n = 12 and D = 4.

Probability (at least 2 rods) = Pr(2) + Pr(3) + Pr(4)

$$= \frac{{}^{4}C_{2} \times {}^{21}C_{10}}{{}^{25}C_{12}} + \frac{{}^{4}C_{3} \times {}^{21}C_{9}}{{}^{25}C_{12}} + \frac{{}^{4}C_{4} \times {}^{21}C_{8}}{{}^{25}C_{12}}$$
$$= 0.4070 + 0.2261 + 0.0391$$

$$= 0.672$$
 (correct to three decimal places).

e i k = 1 - (0.15 + 0.17) which is 0.68

ii
$$E(y) = 0.68 (x - 5) + 0 \times 0.15 + 0.17 (x - 8)$$

$$= 0.17 (5x - 28) \text{ or } 0.85x - 4.76$$

iii If E(y) = 0 then x = \$5.60.

iv
$$\frac{0.68}{0.68 + 0.17} \times 100\% = 80\%$$

Question 2

- a Substitute x = 4 into $y = 2 2 \cos \frac{x}{2}$ gives 2.83 m to two decimal places.
- **b** $\frac{dy}{dx} = \sin\frac{x}{2}$

Now the maximum value that sine can have is 1 within the specified domain. Therefore the gradient must always be less than or equal to 1.

c The area under the curve = $\int_{-1}^{4} (2 - 2\cos\frac{x}{2}) dx$

$$= 2 \int_{0}^{4} (2 - 2\cos\frac{x}{2}) dx$$
$$= 2 \left[2x - 4\sin\frac{x}{2} \right]_{0}^{4}$$

$$= 2 [(8 - 4 \sin 2) - (0 - 0)]$$

= 8.73 square metres (correct to two decimal places).

d i Find the *x* value where y = 1 as *A* is 1 metre above the *x*-axis.

$$1 = 2 - 2\cos\frac{x}{2}$$
 and so $\cos\frac{x}{2} = \frac{1}{2}$

Therefore $\frac{x}{2} = \frac{\pi}{3}$ leading to $x = \frac{2\pi}{3}$, the required *x* co-ordinate.

ii To find the gradient of the normal at this value of *x*, find the gradient of the tangent (same as gradient of the curve) and then find the negative reciprocal.

The gradient of the tangent is:

$$\frac{dy}{dx} = \sin \frac{x}{2} \text{ which is } \frac{\sqrt{3}}{2} \text{ at } x = \frac{2\pi}{3}.$$

The gradient of the normal is $\frac{-2}{\sqrt{3}}$ or $\frac{-2\sqrt{3}}{3}$.

iii Before the length of *AB* can be found it is necessary to find the **equation** of the normal and then find where this cuts the *x*-axis by substituting y = 0.

Equation of
$$AB: y - 1 = \frac{-2\sqrt{3}}{3} (x - \frac{2\pi}{3})$$

At
$$y = 0$$
 $x = \frac{\sqrt{3}}{2} + \frac{2\pi}{3}$.

The length of the straight line from $(\frac{2\pi}{3}, 1)$

to
$$(\frac{\sqrt{3}}{2} + \frac{2\pi}{3}, 0)$$
 is obtained by

substituting into $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. It gives a length of $\frac{\sqrt{7}}{2}$ metres .

Question 3

a
$$f(x) = x^3 e^{-2x}$$

Using Product Rule
 $f'(x) = 3x^2 e^{-2x} - 2x^3 e^{-2x}$
 $= e^{-2x}(-2x^3 + 3x^2).$
 $= e^{-2x}(ax^3 + bx^2)$ if $a = -2$ and $b = 3$.

b Stationary values occur where f'(x) = 0.

If $e^{-2x}(-2x^3 + 3x^2) = 0$ then $-2x^3 + 3x^2 = 0$ as the exponential function e^{-2x} is never zero. $x^2 (3-2x) = 0$ and so x = 0 and x = 1.5

The stationary values are: (0, 0) stationary point of inflexion $(1.5, 3.375 e^{-3})$ maximum turning point.

- **c i** At x = 1 $y = e^{-2}$ and $f'(1) = e^{-2}(-2+3) = e^{-2}$ The equation of the tangent is : $y - e^{-2} = e^{-2}(x - 1)$ Therefore $y - e^{-2} = e^{-2}x - e^{-2}$. Hence $y = e^{-2}x$ as required.
 - **ii** At x = 0 f'(0) = 0 and so the equation is : y = 0

iii Choose any point (p, p^3e^{-2p}) on the curve and find the equation of the tangent at that point.

$$\begin{split} y - p^3 e^{-2p} &= e^{-2p} (-2p^3 + 3p^2) (x - p) \\ y - e^{-2p} (-2p^3 + 3p^2) x \\ &= p^3 e^{-2p} - p \; e^{-2p} (-2p^3 + 3p^2) \end{split}$$

This tangent will pass through the origin only if its *y*-intercept is zero, that is, the RHS of this equation is zero.

Therefore
$$0 = p^3 e^{-2p} - p e^{-2p} (-2p^3 + 3p^2)$$

 $= p^3 e^{-2p} + 2p^4 e^{-2p} - 3p^3 e^{-2p}$
 $= 2p^4 e^{-2p} - 2p^3 e^{-2p}$
 $= 2p^3 e^{-2p} (p-1)$

Now this occurs if p = 0 or p = 1 only as e^{-2p} is never zero. Therefore these are the only two tangents that pass through the origin.

di Using the Product Rule:

$$\frac{d}{dx}(4x^3 + px^2 + qx + 3) e^{-2x}$$

= $(12x^2 + 2px + q) e^{-2x} - 2 (4x^3 + px^2 + qx + 3) e^{-2x}$
= $e^{-2x} [-8x^3 + x^2 (12 - 2p) + x(2p - 2q) + (q - 6)]$

But the derivative given only has an $x^3 e^{-2x}$ term.

Equate the coefficients of x^2 to zero: 12 - 2p = 0 and so p = 6

Equate the coefficients of *x* to zero: 2p - 2q = 0 and so p = q

and the constant coefficient: q - 6 = 0, q = 6The coefficients of x^3 give k = -8. ii The area between the tangent and curve between x = 0 and x = 1 is given by

$$\int_{0}^{1} (e^{-2}x - x^{3}e^{-2x})dx$$

$$= \int_{0}^{1} (e^{-2}x)dx - \int_{0}^{1} (x^{3}e^{-2x})dx$$

$$= \int_{0}^{1} (e^{-2}x)dx + \frac{1}{8}\int_{0}^{1} (-8x^{3}e^{-2x})dx$$

$$= \int_{0}^{1} (e^{-2}x)dx + \frac{1}{8}\int_{0}^{1} \frac{d}{dx}(4x^{3} + 6x^{2} + 6x + 3)e^{-2x}dx$$

$$= \left[\frac{1}{2}e^{-2}x^{2}\right]_{0}^{1} + \frac{1}{8}\left[(4x^{3} + 6x^{2} + 6x + 3)e^{-2x}\right]_{0}^{1}$$

$$= \left(\frac{1}{2}e^{-2} - 0\right) + \frac{1}{8}\left[(4 + 6 + 6 + 3)e^{-2} - 3e^{0}\right]$$

$$= \frac{1}{2}e^{-2} + \frac{1}{8}\left(19e^{-2} - 3\right)$$

$$= \frac{23}{8}e^{-2} - \frac{3}{8}$$

Question 4

a $\frac{3t}{5+t^2} \ge 0.4$ needs to be solved.

Graph $y_1 = \frac{3t}{5+t^2}$ and $y_2 = 0.4$ and find their intersection for $0 \le t \le 16$ and $0 \le x \le 0.7$.

The number of hours = 6.7603986 - 0.73960136 which is 6.02 to two decimal places.

b
$$\frac{dx}{dt} = \frac{(5+t^2)3 - 3t.2t}{(5+t^2)^2}$$

$$=\frac{15+3t^2-6t^2}{(5+t^2)^2}$$

= 0 for a turning point.

This occurs if $3t^2 = 15$ and so $t = \sqrt{5}$, as $t \ge 0$.

Substituting $t = \sqrt{5}$ into *x* gives an exact value of $x = \frac{3\sqrt{5}}{10}$.

c Graphing calculator:

Graph
$$y_1 = \frac{15 - 3t^2}{(5 + t^2)^2}$$

and $y_2 = 0.25$ and find their intersection. t = 1.22 hours (Correct to two decimal places).

d i The function must be one-to-one to have an inverse. Since the upper values tend to infinity, the lower restriction on *t* will occur at the maximum value. $a = \sqrt{5}$

ii The end-point **must** be shown as $(\frac{3\sqrt{5}}{10}, \sqrt{5})$. The equation t = 0 of the vertical asymptote

The equation t = 0 of the vertical asymptote **must** also be clearly put on the graph. The concavity of the end-point is important here.

iii Switch *x* and *t* in $x = \frac{3t}{5+t^2}$ to find the inverse function.

Therefore
$$t = \frac{3x}{5+x^2}$$
.
 $t (5+x^2) = 3x$
 $x^2t + 5t = 3x$
 $x^2t - 3x + 5t = 0$

Solving this quadratic gives:

$$x = \frac{3 \pm \sqrt{9 - 20t^2}}{2t}$$

Now the negative square root sign is **not** the inverse for the specified domain as

$$r_{g-1} = d_g$$

Therefore
$$g^{-1}(x) = \frac{3 + \sqrt{9 - 20t^2}}{2t}$$