

VICTORIAN CURRICULUM AND ASSESSMENT AUTHORIT

Victorian Certificate of Education 2003

| SUPERVISOR TO ATTACH PROCESSING LABEL HERE |  |
|--------------------------------------------|--|
|                                            |  |
|                                            |  |

|         | STUDEN' | Γ NUMBE | <b>CR</b> |  |  |  | Letter |
|---------|---------|---------|-----------|--|--|--|--------|
| Figures |         |         |           |  |  |  |        |
| Words   |         |         |           |  |  |  |        |

## MATHEMATICAL METHODS (CAS) PILOT STUDY

## Written examination 2 (Analysis task)

Monday 10 November 2003

Reading time: 9.00 am to 9.15 am (15 minutes)

Writing time: 9.15 am to 10.45 am (1 hour 30 minutes)

#### **QUESTION AND ANSWER BOOK**

#### Structure of book

| Number of questions | Number of questions to be answered | Number of<br>marks |
|---------------------|------------------------------------|--------------------|
| 4                   | 4                                  | 55                 |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, a protractor, set-squares, aids for curve sketching, up to four pages (two A4 sheets) of pre-written notes (typed or handwritten) and one approved CAS calculator (memory may be retained) and/or one scientific calculator. For the TI-92, Voyage 200 or approved computer based CAS, their full functionality and/or one scientific calculator may be used, but other programs or files are not permitted.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

#### Materials supplied

- Question and answer book of 11 pages, with a detachable sheet of miscellaneous formulas in the centrefold.
- Working space is provided throughout the book.

#### Instructions

- Detach the formula sheet from the centre of this book during reading time.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

#### **Instructions**

- Answer all questions in the spaces provided.
- In questions where more than 1 mark is available, appropriate working must be shown.
- A decimal approximation will not be accepted if an exact answer is required to a question.
- Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

#### **Question 1**

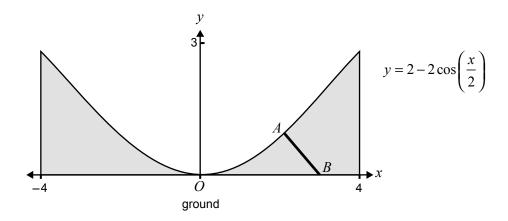
A manufacturer makes metal rods whose lengths are normally distributed with mean 140.0 cm and standard deviation 1.2 cm.

| - |                                                                                                                                                                                                                                                         |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - | 2 mai                                                                                                                                                                                                                                                   |
|   | A rod has a <b>size fault</b> if it is not within <i>d</i> cm either side of the mean. The probability of a rod having a <b>size fault</b> is 0.15. Find the value of <i>d</i> , correct to one decimal place.                                          |
| - | 2 mai                                                                                                                                                                                                                                                   |
|   | A random sample of 12 rods is taken from a crate containing a very large number of rods. Find torobability, correct to three decimal places, that the sample contains exactly 2 rods with a <b>size fault</b> .                                         |
| _ | 2 mai                                                                                                                                                                                                                                                   |
| 1 | A particular box of 25 rods has 4 rods in it which have <b>size faults</b> . A sample of 12 rods is withdrawn withdreplacement. Find the probability, correct to three decimal places, that the sample contains at least 2 rowith a <b>size fault</b> . |
| - |                                                                                                                                                                                                                                                         |
| - | 2 ma                                                                                                                                                                                                                                                    |

e. The sales manager is considering at what price, *x* dollars, to sell each rod. The materials cost \$5. The rods are sorted into three bins. 15% of all the rods manufactured have a size fault and another 17% of all the rods have other faults. The profit, *Y* dollars, is a random variable whose probability distribution is shown in the table below.

| Bin | Description                                                       | Profit(\$y) | Pr(Y=y) |
|-----|-------------------------------------------------------------------|-------------|---------|
| A   | Good rods – these are sold for \$x each                           | x-5         | k       |
| В   | Rods with a size fault – these are not sold but are recycled      | 0           | 0.15    |
| С   | Rods with other faults – these are sold at a discount of \$3 each | x - 8       | 0.17    |

| i.   | Find the value of $k$ .                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                         |
| ii.  | Find the mean of $Y$ in terms of $x$ .                                                                                                  |
|      |                                                                                                                                         |
| iii. | Hence or otherwise, find, correct to the nearest cent, the selling price of good rods so that the mean profit is zero.                  |
|      |                                                                                                                                         |
| iv.  | The rods are stored in bins until there is a large number ready to be sold. What proportion of the rods ready to be sold are good rods? |
|      |                                                                                                                                         |
|      |                                                                                                                                         |


1 + 1 + 1 + 1 = 4 marks

Total 12 marks

#### **Question 2**

b.

Andrew is making a skateboard ramp. He draws a cross-section diagram with coordinate axes as shown below.



The curve has the equation  $y = 2 - 2\cos\left(\frac{x}{2}\right)$ ,  $-4 \le x \le 4$ . All measurements are in metres; the horizontal length of the structure is 8 metres.

| a. | How many metres above the ground is the highest point of the ramp? Give your answer to two decimal |
|----|----------------------------------------------------------------------------------------------------|
|    | places.                                                                                            |

| _ |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| _ |  |  |  |  |

1 mark

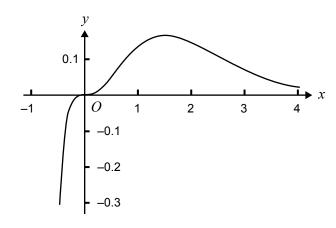
| Show that the gradient of the ramp is always less than or equal to 1. |
|-----------------------------------------------------------------------|
|                                                                       |
|                                                                       |

2 marks

| c. 1.      | write a definite integral which gives the area of the shaded region.                                                                                                                  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ii.        | Find the area of the shaded region, correct to two decimal places.                                                                                                                    |
|            | 2 + 1 = 3  marks                                                                                                                                                                      |
| There is a | supporting beam $AB$ on the structure as shown. $A$ is a point on the curve one metre vertically above $B$ is a point on the $X$ -axis such that $AB$ is normal to the curve at $A$ . |
|            | Find the exact $x$ -coordinate of $A$ .                                                                                                                                               |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
| ii.        | Find the exact value of the gradient of the normal to the curve at A.                                                                                                                 |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
| iii.       | Find the exact length of AB.                                                                                                                                                          |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |
|            |                                                                                                                                                                                       |

2 + 2 + 3 = 7 marks

Total 13 marks


#### **Question 3**

Consider the function  $f: R \to R, f(x) = x^3 e^{-2x}$ 

**a.** Find f'(x).

1 mark

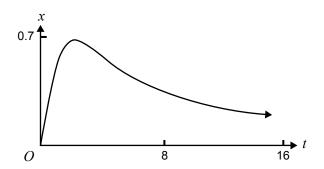
**b.** The graph of y = f(x) is as shown.



| Find the exact coordinates of the two stationary points and state their nature. |  |  |  |
|---------------------------------------------------------------------------------|--|--|--|
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |
|                                                                                 |  |  |  |

2 marks

c.


| Finc       | I an equation of the tangent to the graph of $y = f(x)$ at the point where $x = 1$ .                  |
|------------|-------------------------------------------------------------------------------------------------------|
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
| Finc       | I an equation of the tangent to the curve at the point $(0, 0)$ .                                     |
|            |                                                                                                       |
| Show the o | w that the tangents of parts i. and ii. are the only two tangents to the curve which pass throprigin. |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |
|            |                                                                                                       |

3 + 1 + 3 = 7 marks

| i.  | Find the value of $k$ .                                                                                 |      |
|-----|---------------------------------------------------------------------------------------------------------|------|
|     |                                                                                                         |      |
|     |                                                                                                         |      |
|     |                                                                                                         |      |
|     |                                                                                                         |      |
|     |                                                                                                         |      |
|     |                                                                                                         |      |
|     |                                                                                                         |      |
| ii. | Find, correct to two decimal places, the median value of the distribution of this probability function. | y de |
| ii. |                                                                                                         | y de |

#### **Question 4**

A tranquilliser is injected into a muscle from which it enters the bloodstream. The concentration, x mg/L, of the tranquilliser in the bloodstream, may be modelled by the equation  $x = \frac{3t}{5+t^2}$ ,  $t \ge 0$ , where t is the number of hours after the injection is given. The graph of this equation is shown.

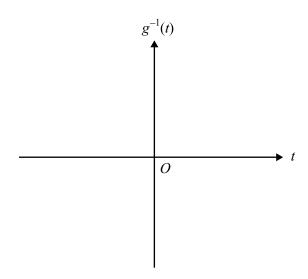


2 marks

**b.** The derivative of *x* with respect to *t* gives a measure of the rate of absorption of the tranquilliser into the bloodstream.

What is the exact rate of absorption one hour after the injection is given?

1 mark


**c.** The tranquilliser is effective when the concentration is at least 0.4 mg/L.

Find the exact value of the length of time in hours for which the tranquilliser is effective.

3 marks

**d.** i. What is the least value of a such that the function  $g: [a, \infty) \to R$ ,  $g(t) = \frac{3t}{5+t^2}$ , has an inverse function?

ii. For this value of a, sketch the graph of  $g^{-1}$  on the axes below. Label any end-point with its coordinates. Label any asymptote with its equation.



|  | MATH | METH | (CAS) | EXA | M |  |
|--|------|------|-------|-----|---|--|
|--|------|------|-------|-----|---|--|

| It is discove time. A most the injection | ii. Find the rule for $g^{-1}$ .                                                                                                                                                                                                                                        |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                         |
|                                          |                                                                                                                                                                                                                                                                         |
|                                          | 1 + 3 + 3 = 7 marks                                                                                                                                                                                                                                                     |
| time.                                    | discovered that the drug will produce undesirable side-effects if its concentration exceeds 1 mg/L at any A modification to the drug is proposed so that the concentration in the blood, $y$ mg/L, at time $t$ hours after jection is given is modelled by the equation |
|                                          | $y = \frac{3t}{p+t^2}$ , $0 \le t \le 8$ , where p is a parameter.                                                                                                                                                                                                      |
| e. I                                     | Find the least value which $p$ may take if the concentration is to be always less than 1 mg/L.                                                                                                                                                                          |
| -                                        |                                                                                                                                                                                                                                                                         |
| _                                        |                                                                                                                                                                                                                                                                         |
| _                                        |                                                                                                                                                                                                                                                                         |
|                                          | 3 marks                                                                                                                                                                                                                                                                 |
|                                          | Total 16 marks                                                                                                                                                                                                                                                          |

END OF QUESTION AND ANSWER BOOK

# MATHEMATICAL METHODS (CAS) PILOT STUDY

#### Written examinations 1 and 2

#### **FORMULA SHEET**

#### **Directions to students**

Detach this formula sheet during reading time.

This formula sheet is provided for your reference.

#### **Mathematical Methods CAS Formulas**

#### Mensuration

volume of a pyramid:  $\frac{1}{3}Ah$ volume of a sphere:  $\frac{4}{3}\pi r^3$  $\frac{1}{2}(a+b)h$ area of a trapezium:

curved surface area of a cylinder:  $2\pi rh$ 

 $\pi r^2 h$ volume of a cylinder: area of a triangle:

 $\frac{1}{3}\pi r^2 h$ volume of a cone:

#### **Calculus**

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\int \sin(ax) dx = -\frac{1}{a} \cos(ax) + c$$

$$\int \sin(ax) dx = -\frac{1}{a} \sin(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$$

$$\int \cos(ax) dx = \frac{1}{a} \sin(ax) + c$$

$$\int \cot(ax) dx = \frac{1}{a} \cot(ax) + c$$

$$\int \cot(ax) dx = c$$

### average value: $\frac{1}{b-a} \int_{a}^{b} f(x) dx$

quotient rule: 
$$\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

#### **Statistics**

$$\Pr(A) = 1 - \Pr(A')$$

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B)$$

$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$
transition matrices:  $S_n = T^n \times S_0$ 

 $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$  $\mu = E(X)$ variance: mean:

|                          |     | Pr(X = x)                                        | mean                                        | variance                                                             |  |  |  |  |
|--------------------------|-----|--------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| general                  |     | p(x)                                             | $\mu = \sum x p(x)$                         | $\sigma^2 = \sum (x - \mu)^2 p(x)$                                   |  |  |  |  |
|                          |     |                                                  |                                             | $= \sum x^2 p(x) - \mu^2$                                            |  |  |  |  |
| binomial                 |     | ${}^{n}C_{x}p^{x}(1-p)^{n-x}$                    | np                                          | np(1-p)                                                              |  |  |  |  |
| hypergeometr             | ric | $\frac{{}^{D}C_{x}{}^{N-D}C_{n-x}}{{}^{N}C_{n}}$ | $n\frac{D}{N}$                              | $n\frac{D}{N}\left(1-\frac{D}{N}\right)\left(\frac{N-n}{N-1}\right)$ |  |  |  |  |
| Continuous distributions |     |                                                  |                                             |                                                                      |  |  |  |  |
|                          |     | Pr(a < X < b)                                    | mean variance                               |                                                                      |  |  |  |  |
| general                  |     | $\int_{a}^{b} f(x)dx$                            | $\mu = \int_{-\infty}^{\infty} x \ f(x) dx$ | $\sigma^2 = \int_{-\infty}^{\infty} (x - u)^2 f(x) dx$               |  |  |  |  |
|                          |     |                                                  |                                             | $= \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$                      |  |  |  |  |

Table 1 Normal distribution – cdf

|     | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9          |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|---|----|----|----|----|----|----|------------|
| 0.0 | .5000  | .5040  | .5080  | .5120  | .5160  | .5199  | .5239  | .5279  | .5319  | .5359  | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36         |
| 0.1 | .5398  | .5438  | .5478  | .5517  | .5557  | .5596  | .5636  | .5675  | .5714  | .5753  | 4 |   |    | 16 |    |    |    |    |            |
| 0.1 | .5793  | .5832  | .5871  | .5910  | .5948  | .5987  | .6026  | .6064  | .6103  | .6141  | 4 |   |    | 15 |    |    |    |    |            |
| 0.2 | .6179  | .6217  | .6255  | .6293  | .6331  | .6368  | .6406  | .6443  | .6480  | .6517  | 4 |   |    | 15 |    |    |    |    |            |
| 0.3 | .6554  | .6591  | .6628  | .6664  | .6700  | .6736  | .6772  | .6808  | .6844  | .6879  | 4 |   |    | 14 |    |    |    |    |            |
| 0.4 | .0004  | .0391  | .0020  | .0004  | .0700  | .0730  | .0772  | .0000  | .0044  | .0079  | • | , |    | 14 | 10 | ~~ | 23 | 23 | <b>5</b> 2 |
| 0.5 | .6915  | .6950  | .6985  | .7019  | .7054  | .7088  | .7123  | .7157  | .7190  | .7224  | 3 | 7 | 10 | 14 | 17 | 21 | 24 | 27 | 31         |
| 0.6 | .7257  | .7291  | .7324  | .7357  | .7389  | .7422  | .7454  | .7486  | .7517  | .7549  | 3 | 6 | 10 | 13 | 16 | 19 | 23 | 26 | 29         |
| 0.7 | .7580  | .7611  | .7642  | .7673  | .7703  | .7734  | .7764  | .7793  | .7823  | .7852  | 3 | 6 | 9  | 12 | 15 | 18 | 21 | 24 | 27         |
| 0.8 | .7881  | .7910  | .7939  | .7967  | .7995  | .8023  | .8051  | .8078  | .8106  | .8133  | 3 | 6 | 8  | 11 | 14 | 17 | 19 | 22 | 25         |
| 0.9 | .8159  | .8186  | .8212  | .8238  | .8264  | .8289  | .8315  | .8340  | .8365  | .8389  | 3 | 5 | 8  | 10 | 13 | 15 | 18 | 20 | 23         |
| 1.0 | .8413  | .8438  | .8461  | .8485  | .8508  | .8531  | .8554  | .8577  | .8599  | .8621  | 2 | 5 | 7  | 9  | 12 | 14 | 16 | 18 | 21         |
| 1.1 | .8643  | .8665  | .8686  | .8708  | .8729  | .8749  | .8770  | .8790  | .8810  | .8830  | 2 | 4 | 6  | 8  | 10 | 12 | 14 | 16 | 19         |
| 1.2 | .8849  | .8869  | .8888  | .8907  | .8925  | .8944  | .8962  | .8980  | .8997  | .9015  | 2 | 4 | 6  | 7  | 9  | 11 | 13 | 15 | 16         |
| 1.3 | .9032  | .9049  | .9066  | .9082  | .9099  | .9115  | .9131  | .9147  | .9162  | .9177  | 2 | 3 | 5  | 6  | 8  | 10 | 11 | 13 | 14         |
| 1.4 | .9192  | .9207  | .9222  | .9236  | .9251  | .9265  | .9279  | .9292  | .9306  | .9319  | 1 | 3 | 4  | 6  | 7  | 8  | 10 | 11 | 13         |
| 1.5 | .9332  | .9345  | .9357  | .9370  | .9382  | .9394  | .9406  | .9418  | .9429  | .9441  | 1 | 2 | 4  | 5  | 6  | 7  | 8  | 10 | 11         |
| 1.6 | .9452  | .9463  | .9474  | .9484  | .9495  | .9505  | .9515  | .9525  | .9535  | .9545  | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9          |
| 1.7 | .9554  | .9564  | .9573  | .9582  | .9591  | .9599  | .9608  | .9616  | .9625  | .9633  | 1 | 2 | 3  | 3  | 4  | 5  | 6  | 7  | 8          |
| 1.8 | .9641  | .9649  | .9656  | .9664  | .9671  | .9678  | .9686  | .9693  | .9699  | .9706  | 1 | 1 | 2  | 3  | 4  | 4  | 5  | 6  | 6          |
| 1.9 | .9713  | .9719  | .9726  | .9732  | .9738  | .9744  | .9750  | .9756  | .9761  | .9767  | 1 | 1 | 2  | 2  | 3  | 4  | 4  | 5  | 5          |
| 2.0 | .9772  | .9778  | .9783  | .9788  | .9793  | .9798  | .9803  | .9808  | .9812  | .9817  | 0 | 1 | 1  | 2  | 2  | 3  | 3  | 4  | 4          |
| 2.1 | .9821  | .9826  | .9830  | .9834  | .9838  | .9842  | .9846  | .9850  | .9854  | .9857  | 0 | 1 | 1  | 2  | 2  | 2  | 3  | 3  | 4          |
| 2.2 | .9861  | .9864  | .9868  | .9871  | .9875  | .9878  | .9881  | .9884  | .9887  | .9890  | 0 | 1 | 1  | 1  | 2  | 2  | 2  | 3  | 3          |
| 2.3 | .9893  | .9896  | .9898  | .9901  | .9904  | .9906  | .9909  | .9911  | .9913  | .9916  | 0 | 1 | 1  | 1  | 1  | 2  | 2  | 2  | 2          |
| 2.4 | .9918  | .9920  | .9922  | .9925  | .9927  | .9929  | .9931  | .9932  | .9934  | .9936  | 0 | 0 | 1  | 1  | 1  | 1  | 1  | 2  | 2          |
| 2.5 | .9938  | .9940  | .9941  | .9943  | .9945  | .9946  | .9948  | .9949  | .9951  | .9952  | 0 | 0 | 0  | 1  | 1  | 1  | 1  | 1  | 1          |
| 2.6 | .9953  | .9955  | .9956  | .9957  | .9959  | .9960  | .9961  | .9962  | .9963  | .9964  | 0 | 0 | 0  | 0  | 1  | 1  | 1  | 1  | 1          |
| 2.7 | .9965  | .9966  | .9967  | .9968  | .9969  | .9970  | .9971  | .9972  | .9973  | .9974  | 0 | 0 | 0  | 0  | 0  | 1  | 1  | 1  | 1          |
| 2.8 | .9974  | .9975  | .9976  | .9977  | .9977  | .9978  | .9979  | .9979  | .9980  | .9981  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 1  | 1          |
| 2.9 | .9981  | .9982  | .9982  | .9983  | .9984  | .9984  | .9985  | .9985  | .9986  | .9986  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.0 | .9987  | .9987  | .9987  | .9988  | .9988  | .9989  | .9989  | .9989  | .9990  | .9990  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.1 | .9990  | .9991  | .9991  | .9991  | .9992  | .9992  | .9992  | .9992  | .9993  | .9993  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.2 | .9993  | .9993  | .9994  | .9994  | .9994  | .9994  | .9994  | .9995  | .9995  | .9995  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.3 | .9995  | .9995  | .9995  | .9996  | .9996  | .9996  | .9996  | .9996  | .9996  | .9997  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.4 | .9997  | .9997  | .9997  | .9997  | .9997  | .9997  | .9997  | .9997  | .9997  | .9998  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.5 | .9998  | .9998  | .9998  | .9998  | .9998  | .9998  | .9998  | .9998  | .9998  | .9998  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.6 | .9998  | .9998  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.7 | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.8 | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | .9999  | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |
| 3.9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0          |