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ii. From the graph in part a. i., there are no local minima or maxima and no 

stationary points of inflection, hence there is no solution to the equation 

0=
dx

dy
. 

(1 mark) 

 

 

c. i. 1−f  exists because we see from the graph in a. i., that f is a 1:1 function. 
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iii. Use the graph you have drawn in part a. i. and reflect it in the line xy = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The asymptotes for the graph of ( ) 4 and 1 are === yxxfy , therefore for the graph 

of ( )xfy 1−= , the asymptotes are 4 and 1 == xy . 

On the graph of ( )xfy = , the graph passed through the points ( ) ( )6,2 and 2,0,0,
2

1








.  

On the graph of ( )xfy 1−= , the graph passes through the points 

( ) ( )2,6 and 0,2,
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1
,0 
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(1 mark) shape 

including asymptotes 

(1 mark) intercepts 
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d. To Show.  ( ) ( )∫ ∫ −=
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e. Method 1 

 

 Use your graphics calculator to graph each of the functions )( and )(1 xfyxfy == − . 

The values of x for which )()( 1 xfxf −=  occur at 56.4 and 44.0 == xx  where each 

number is correct to 2 decimal places. 

(2 marks) 

Method 2 

  

As the points of intersection must lie on the line xy = , find the points of intersection 
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The values of x for which ( ) ( )
2
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 are 1 ±

== − xxfxf . 
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Total 16 marks 

(1 mark) 
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Question 2 

 

a. The probability that a randomly selected female donor at the facility will have a 

haemoglobin level that is considered high is 0.1. 

(1 mark) 

 

b. This is a binomial distribution because each time we select one of the 10, the 

probability that they have a level that is considered high is constant i.e. 0.1. 
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So 15% (to the nearest whole percent) of female donors at the facility are not allowed 

to donate because their haemoglobin level is too low. 

(1 mark) 

 

e. There are 10% of female donors who have a haemoglobin level that is considered 

high and from part d. there are 15% of female donors who have haemoglobin levels 

that are too low to donate. So 75% of female donors don’t suffer from a haemoglobin 

level that is considered high or is too low. 

(1 mark) 

The expected number of female donors in a day in this category is 225. 

(1 mark) 

f. This is a hypergeometric distribution because there is no replacement. 
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Question 3 

 

a. ( ) ( ) [ ]2,0cos ∈= xxxp π  

The amplitude of this function is 1. The normal height of the water is 1 metre. 

(1 mark) 

b. 
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ii. Hence the volume of water in a 10 m length of fibreglass channel is 
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ii. The maximum value of ( ) 1 is sin xπ and the minimum value is –1. 

Therefore the maximum value of ( ) πππ  is sin x−  and the minimum value 

π− is  .       (2 marks) 

Note that the question did not ask for the maximum and minimum points on 

the fibreglass channel i.e. we were not looking to solve 0=
dx

dp
. 
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When π−=
dx

dp
, we have 
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So half a metre from either side of the fibreglass channel, the maximum and 

minimum gradients occur. 

 

 

d. Sketch a graph. 
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Total 13 marks 

 

Question 4 

 

a. Now, ( ) 100 =V , since the piece of machinery normally has 10 litres of coolant in it. 
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So ( )( ) 0115
2 →−+− te t  since it doesn’t matter how large ( )( )2

11 −+ t  becomes if it 

is being multiplied by a value close to zero then the value of the product of the two 

approaches zero also. So ( ) 0→tV  

(1 mark) 
 

 

c. We need to solve ( ) 5=tV  

So ( ) 5155
2 =−+ −− tee tt . 

Graph the function ( ) 5155
2 −−+= −− teey tt  on your graphics calculator and find 

the value of t when 0=y .   

Alternatively, find the t-coordinate where the functions ( )2155 −+= −− teey tt  and 

5=y  intersect.             (1 mark) 

So,       350 ⋅=t  minutes (correct to 2 decimal places) 
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(1 mark) correct integrand 
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(1 mark) correct terminals 
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d. Rate of change in first minute 
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So the rate of change of V with respect to t is greater in the first minute. 

(Note that technically 1606.84860.0 −>−  but the negative refers to a decrease in the 

volume of fluid present and so the fluid is decreasing at a higher rate in the first hour.) 

(1 mark) correct rates of change 

(1 mark) correct conclusion 
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ii. From the graph it appears that at 2=x  there could be a stationary point of 

inflection. You must confirm that however. Use the first derivative test. 
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At 2=t , there is a stationary point of inflection. 

(1 mark) answer 

(1 mark) first derivative test 

 

iii. If an employee momentarily stops the liquid from leaking then the gradient of 

the graph of ( )tVy =  will be zero for an instant. This corresponds to the 

stationary point of inflection on the graph. 

Hence when 2=t , 
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Hence the exact volume present is 210 −e  litres. 
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f. From part e. i., 
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The product ( )225 −××− − te t  must therefore be negative for all t. 

(1 mark) 

Total 14 marks 
 

 


