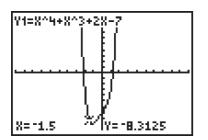
2004 Mathematical Methods Written Examination 1 (Facts, skills and applications) Suggested answers and solutions

Answers – Multiple Choice

1. B	2. C	3. A	4. E	5. C
6. C	7. E	8. D	9. E	10. A
11. A	12. B	13. D	14. E	15. C
16. A	17. D	18. E	19. C	20. A
21. C	22. B	23. C	24. C	25. D
26. A	27. E			

Question 1

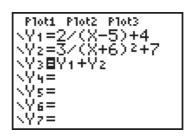
The graph is a negative quartic with solutions at x = a and x = b.

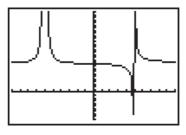

Question 2

2x + 3 = 0

$$x = -\frac{3}{2}$$

$$f(-\frac{3}{2}) = (-\frac{3}{2})4 + (-\frac{3}{2})3 + 2(-\frac{3}{2}) - 7$$


$$= -8\frac{5}{16}$$



[C]

[B]

Question 3

The range is *R*

[A]

Question 4

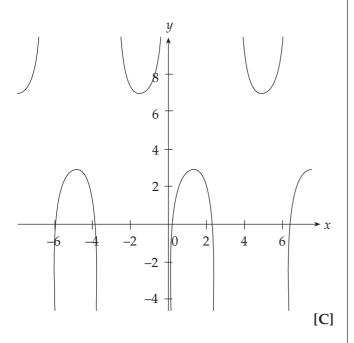
The asymptotes of $y = \frac{-3}{(x-4)^2} + 2$ are x = 4 and y = 2.

Hence the equations of the asymptotes of the inverse are x = 2 and y = 4. [E]

Question 5

 $y = -e^x$ reflected in the *y*-axis is $y = -e^{-x}$, and dilated by a factor of $\frac{1}{2}$ from the *y*-axis is $y = -e^{-2x}$. **[C]**

A dilation from the *x*-axis is $y = \frac{2}{\sin(x)}$.


A reflection in both axes is $y = \frac{-2}{\sin(-x)} = \frac{2}{\sin(x)}$.

A translation 5 units parallel to the *y*-axis is

$$y = \frac{2}{\sin(x)} + 5.$$

A translation 3 units parallel to the *x*-axis is

$$y = \frac{2}{\sin(x-3)} + 5.$$

Question 7

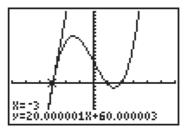
 $f(x) = A - B\sin(Cx + D)$

The amplitude is |B| = B

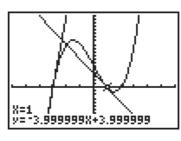
The period is $\frac{2\pi}{C}$ [E]

Question 8

Via the chain rule

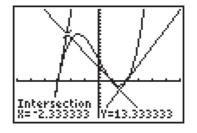

$$\frac{dy}{dx} = 2 \times 0.5 \sin(2x)2\cos(2x)$$
$$= 2\sin(2x)\cos(2x)$$
[D]

Question 9


Area =
$$2\int_{0}^{\frac{\pi}{4}} \sin(x) dx = 2[-\cos(\frac{\pi}{4}) + \cos(0)]$$

= $2[-\frac{1}{\sqrt{2}} + 1]$
= $2 - \sqrt{2}$ [E]

Question 10


The equation of the tangent at x = -3 is y = 20x + 60,

and at
$$x = 1$$
, $y = -4x + 4$

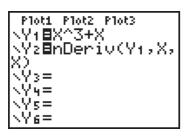
$$y = -4x + 4$$
 and $y = 20x + 60$ intersect at
 $(-2\frac{1}{3}, 13\frac{1}{3}).$

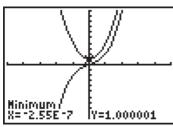
The gradients are –4 and 20.

[A]

Question 11

$$f(x+h) \approx f(x) + h f'(x)$$


$$f(x+h) - f(x) \approx h f'(x)$$


$$= 0.001 \times \frac{-2}{(x+4)^2}$$
[A]

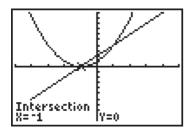
 $f(x) = x^3 + x$ has a point of inflection at x = 0.

$$f'(x) = 3x^2 + 1$$

$$f'(0)=1$$

Question 13

 $\frac{d}{dx}\log_e(1-\sin^2(x))$ $=\frac{d}{dx}\log_e(\cos^2(x))$ $=\frac{-2\cos(x)\sin(x)}{\cos^2(x)}$ $=\frac{-2\sin(x)}{\cos(x)}$


$$= -2\tan(x)$$

Question 14

g'(x) = 2x + 2

g'(x) intersects g(x) at x = -1.

g'(-1) = 0 and the gradient of g'(x) = 2.

Hence g'(x) is not a tangent to g(x) at x = -1. [E]

Question 15

$$\int (2x^2 + 4)^3 dx$$

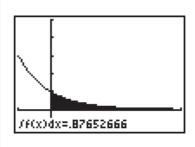
=
$$\int (8x^6 + 48x^4 + 96x^2 + 64) dx$$

by the binomial expansion or otherwise

$$= \frac{8x^7}{7} + \frac{48x^5}{5} + 32x^3 + 64x + c,$$

where *c* is a constant.

Hence
$$\frac{8x^7}{7} + \frac{48x^5}{5} + 32x^3 + 64x + 8$$


is an antiderivative

Question 16

[B]

[D]

 $\frac{13}{27}$ is less than the exact answer.

Hence the right rectangle rule must have been used.

Try width 1 unit.

Area
$$\approx f(1) + f(2) + f(3)$$

= $\frac{1}{3} + \frac{1}{9} + \frac{1}{27}$
= $\frac{13}{27}$ [A]

Question 17

Top curve minus the bottom curve.

$$\int_{a}^{b} (g(x) - f(x))dx + \int_{b}^{c} ((f(x) - g(x))dx$$
 [D]

[C]

$${}^{9}C_{5}(2x)^{4}(-1)^{5} = -126 \times 16x^{4}$$

= $-2016x^{4}$
The term is $-2016x^{4}$.

Question 19

 $f(x) = 2\sqrt{1 - 3x}$ The range is $(0, \infty)$.

Let $y = 2\sqrt{1-3x}$

Let $y = 2\sqrt{1-5x}$

Then the inverse is

 $x = 2\sqrt{1-3y}$ $\left(\frac{x}{2}\right)^2 = 1-3y$ $y = \frac{1-\frac{x^2}{4}}{3}$ $= \frac{4-x^2}{12}$

The domain of the inverse is $(0, \infty)$.

$$f^{-1}: (0, \infty) \to R$$
, where $f^{-1}(x) = -\frac{x^2}{12} + \frac{1}{3}$ [C]

Question 20

$$y = \log_e(2x + 1) + 3$$

x-intercept
Let $y = 0$
 $0 = \log_e(2x + 1) + 3$
 $e^{-3} = 2x + 1$
 $x = \frac{e^{-3} - 1}{2}$
 $= \frac{1 - e^3}{2e^3}$
y-intercept
Let $x = 0$
 $y = \log_e(1) + 3$

Question 21

[E]

$$3e^{2x} - 17e^{x} + 10 = 0$$

Let $a = e^{x}$

$$3a^{2} - 17a + 10 = 0$$

$$(3a - 2)(a - 5) = 0$$

 $a = \frac{2}{3} \text{ or } 5$
 $e^{x} = \frac{2}{3} \text{ or } e^{x} = 5$
 $x = \log_{e}(\frac{2}{3}) = \log_{e}(2) - \log_{e}(3) \text{ or } x = \log_{e}(5)$ [C]

Question 22

$$\log_{2}(2x) - 5\log_{2}(x - 1) - \log_{2}(y) = 2$$

$$\log_{2}(\frac{2x}{y(x - 1)^{5}}) = 2$$

$$\frac{2x}{y(x - 1)^{5}} = 4$$

$$y = \frac{2x}{4(x - 1)^{5}} = \frac{x}{2(x - 1)^{5}}$$
 [B]

Question 23

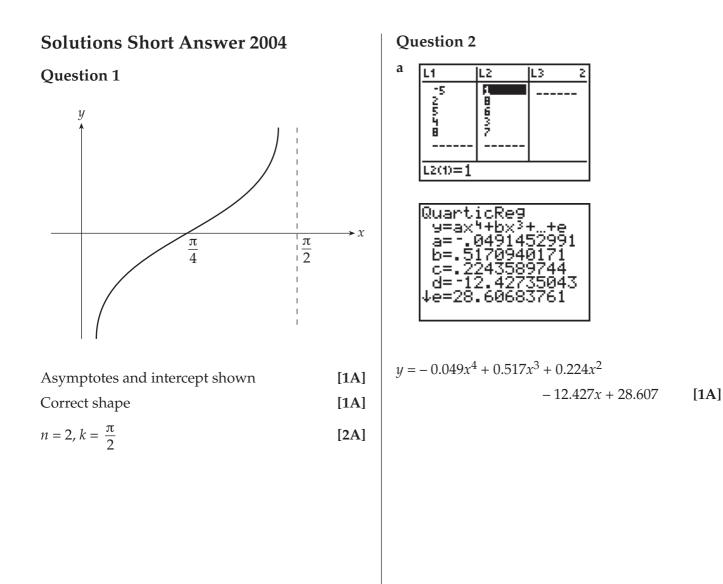
$$Pr(X > 15) = normalcdf(15,1E99,10,3)$$

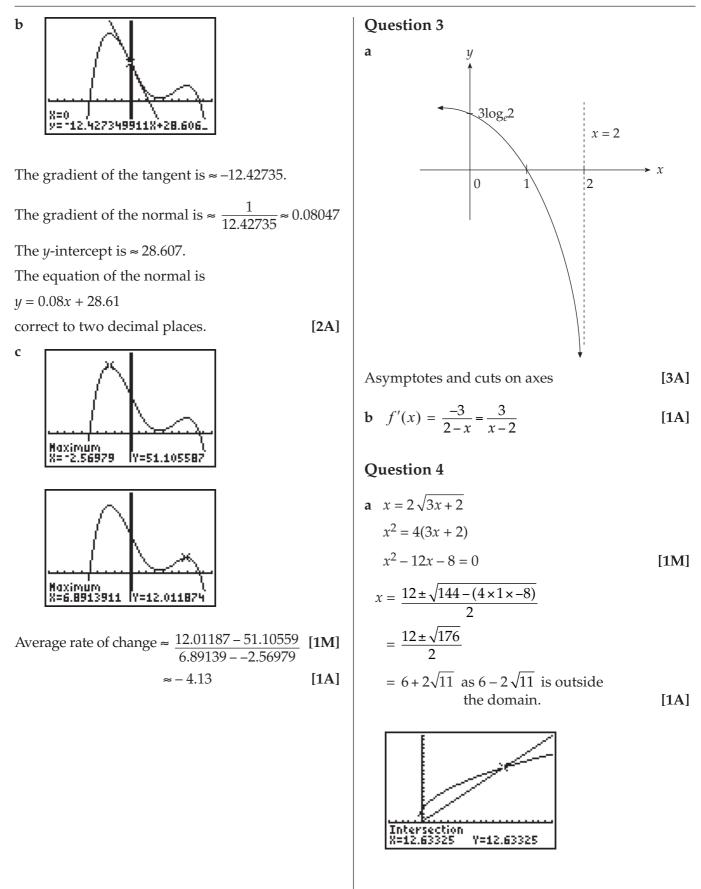
= 0.0478 [C]

Question 24

Hypergeometric distribution with N = 16, n = 10, D = 4, x = 0, 1 [C]

Question 25


 $Var(X) = E(X^{2}) - [E(X)]^{2}$ = 4k - 4k² Sd(X) = $\sqrt{Var(X)} = 2\sqrt{k(1-k)}$ [D]


Question 26

[A]

Recognise the symmetry; 0.7 + 0.15 = 0.85InvNorm (0.85,1,1.5) = 2.555 M + k = 2.555, k = 1.555 [A]

For binomial E(X) = np, Var(X) = np(1-p)For hypergeometric $E(X) = \frac{nD}{N}$, $Var(X) = \frac{nD(N-D)(N-n)}{N^2(N-1)}$ < np(1-p)[E]

b Let
$$y = 2\sqrt{3x+2}$$
 [1M]

$$\frac{x^{2}}{4} = 3y+2$$

$$y = \frac{x^{2}}{12} - \frac{2}{3}$$

$$f^{-1}: [0, \infty) \rightarrow R, \text{ where } f^{-1}(x) = \frac{x^{2}}{12} - \frac{2}{3}$$
[1A]
c $\int_{0}^{6+2\sqrt{11}} \left(x - \left(\frac{x^{2}}{12} - \frac{2}{3}\right)\right) dx$
[1M]

$$= \left[\frac{x^{2}}{2} - \frac{x^{3}}{36} + \frac{2}{3}x\right]_{0}^{6+2\sqrt{11}}$$
[1M]

$$= \frac{(6+2\sqrt{11})^{2}}{2} - \frac{(6+2\sqrt{11})^{3}}{36} + \frac{2(6+2\sqrt{11})}{3}$$

$$= 16 + \frac{44\sqrt{11}}{9}$$

$$\approx 32.2146$$
[1A]
Calculator check

$$\boxed{\begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

a
$$Pr(B \ge 1) = 1 - Pr(B = 0)$$

= 1 - 0.49³
= 0.8824 [1A]

b
$$Pr(B = 3 | B \ge 1) = \frac{Pr(B = 3)}{Pr(B \ge 1)}$$
 [1M]

$$= \frac{0.51^3}{0.8824}$$

= 0.1503 [1A]

/f(x)dx=32.21461