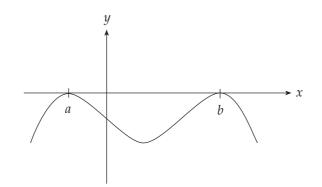
Multiple Choice Questions

Question 1



The equation of the above graph could be

A $y = (x - a)^2 (x - b)^2$ B $y = -(x - a)^2 (x - b)^2$ C $y = -(x + a)^2 (x - b)^2$ D $y = (x + a)^2 (x - b)^2$ E $y = -(x + a)^2 (x + b)^2$

Question 2

If $x^4 + x^3 + 2x - 7$ is divided by 2x + 3 then the remainder is

A 41 **B** $4\frac{7}{16}$ **C** $-8\frac{5}{16}$ **D** $8\frac{5}{16}$ **E** 0

Question 3

If $p(x) = \frac{2}{x-5} + 4$ and $q(x) = \frac{3}{(x+6)^2} + 7$ then the largest possible range of p(x) + q(x) is **A** R **B** $R \setminus \{-6, 5\}$ **C** (11, ∞) **D** $R \setminus \{4, 7\}$ **E** $R \setminus \{11\}$

The equations of the asymptotes of the graph of the inverse function of $y = \frac{-3}{(x-4)^2} + 2$ are

A x = 4, y = 2B x = -4, y = 2C x = 2, y = -4D x = -2, y = 4E x = 2, y = 4

Question 5

If $y = -e^x$ is reflected in the *y*-axis and dilated by a factor of $\frac{1}{2}$ from the *y*-axis then the equation of the new graph is

A $y = e^{2x}$ B $y = -e^{-\frac{1}{2}x}$ C $y = -e^{-2x}$ D $y = e^{\frac{1}{2}x}$ E $y = \frac{-1}{2}e^{x}$

Question 6

The function $f(x) = \frac{1}{\sin x}$ is transformed by:

- a dilation of a factor of 2 from the *x*-axis
- a reflection in both the *x* and *y* axes
- a translation of 5 units parallel to the *y*-axis in the positive direction, and then
- a translation of 3 units parallel to the *x*-axis in the positive direction.

The rule for the new function is

A
$$g(x) = \frac{-2}{\sin(-x-3)} + 5$$

B $g(x) = \frac{2}{-\sin(x+3)} + 5$
C $g(x) = \frac{2}{\sin(x-3)} + 5$
D $g(x) = \frac{-2}{\sin(3+x)} + 5$
E $g(x) = \frac{-2}{\sin(3-x)} - 5$

The function $f(x) = A - B \sin(Cx + D)$, where *A*, *B* and *C* are positive real constants, has an amplitude and period respectively of

Α	A-B,	С
B	-В,	$\frac{2\pi}{C}$
С	A-B,	$\frac{2\pi}{C}$
D	А,	$\frac{2\pi}{C}$
Ε	В,	$\frac{2\pi}{C}$

Question 8

If $y = 0.5\sin^2(2x)$ then $\frac{dy}{dx}$ is equal to

- A sin(2x)
- **B** sin(x) cos(x)
- **C** $2\sin(x)\cos(x)$
- **D** $2\sin(2x)\cos(2x)$
- **E** $4\sin(2x)\cos(2x)$

Question 9

The total area of the regions enclosed by f(x) = sin(x), the *x*-axis, and the lines

$$x = \pm \frac{\pi}{4}$$
 is equal to

$$A \quad \frac{\pi}{2}$$

$$B \quad \sqrt{2}$$

$$C \quad 2\sqrt{2}$$

$$D \quad 0$$

E $2 - \sqrt{2}$

If the intersection of the tangents to f(x) = (x-1)(x-2)(x+3) at two of the *x*-intercepts is $(-2\frac{1}{3}, 13\frac{1}{3})$, then the gradients of the tangents are

- A -4 and 20
- **B** 5 and 20
- **C** –4 and 5
- **D** –10 and 4
- **E** 4 and 60

Question 11

Using the linear approximation formula $f(x + h) \approx f(x) + h f'(x)$ where $f(x) = \frac{2}{x + 4}$, the approximate change in f(x) when x increases by 0.001 is

A
$$0.001 \times \frac{-2}{(x+4)^2}$$

B $0.001 \times \frac{2}{(x+4)^2}$
C $\frac{2}{x+4} + 0.001 \times \frac{-2}{(x+4)^2}$
D $\frac{2}{x+4} + 0.001 \times \frac{2}{(x+4)^2}$
E $0.001 \times 2\log_e(x+4)$

Question 12

The instantaneous rate of change of $f(x) = x^3 + x$ at the point where f'(x) is a minimum is

 $\frac{d}{dx}\log_e(1-\sin^2(x)) \text{ equals}$ $\mathbf{A} \quad \frac{1}{\cos(x)}$ $\mathbf{B} \quad 2\tan(x)$ $\mathbf{C} \quad \frac{1}{\cos^2(x)}$ $\mathbf{D} \quad -2\tan(x)$ $\mathbf{E} \quad \cos^2(x)$

Question 14

If $g(x) = x^2 + 2x + 1$ and $f(x) = 2e^x$ then which one of the following statements is **false**?

- **A** y = g'(x) is a tangent to the graph of y = f(x)
- **B** y = g'(x) is a tangent to the graph of y = f'(x)
- $\mathbf{C} \qquad y = f(x) = f'(x)$
- **D** y = g'(x) is a tangent to the graph of y = an antiderivative of f(x)
- **E** y = g'(x) is a tangent to the graph of y = g(x) at x = -1

Question 15

An antiderivative of $(2x^2 + 4)^3$ is

A
$$\frac{(2x^2+4)^4}{8}$$

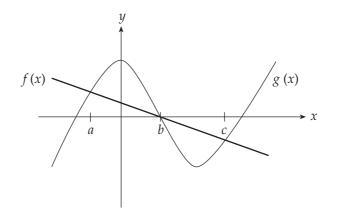
B $\frac{(2x^2+4)^4}{16x}$
C $\frac{8x^7}{7} + \frac{48x^5}{5} + 32x^3 + 64x + 8$
D $8x^7 + 48x^5 + 96x^3 + 64x$

E
$$12x(2x^2+4)^2$$

A student found an approximation to the area bounded by the graph of $f(x) = 3^{-x}$, the *x*-axis and the lines x = 0 and x = 3 to be $\frac{13}{27}$ units squared. Which one of the following methods did the student use to calculate the area?

- A Right rectangle rule with strips of width 1 unit.
- **B** Left rectangle rule with strips of width 1 unit.
- **C** $\int_0^3 f(x) dx$
- **D** Right rectangle rule with strips of width 0.5 units.
- **E** Left rectangle rule with strips of width 0.5 units.

Question 17



If f(x) and g(x) intersect at x = a, x = b and x = c then the area bounded by f(x) and g(x) can be found by evaluating

- $\mathbf{A} \qquad \int_b^a (g(x) f(x)) dx + \int_b^c ((f(x) g(x))) dx$
- $\mathbf{B} \qquad \int_a^b (f(x) g(x)) dx + \int_b^c ((g(x) f(x))) dx$
- **C** $\int_{a}^{c} (g(x) f(x)) dx$
- $\mathbf{D} \qquad \int_a^b (g(x) f(x)) dx + \int_b^c ((f(x) g(x)) dx$
- $\mathbf{E} \qquad \int_{a}^{c} (f(x) g(x)) dx$

In the expansion of $(2x-1)^9$ one of the terms is

- A −16x⁴
 B −2016
- **C** $-252x^4$
- **D** $-2016x^5$
- **E** –2016*x*⁴

Question 19

The rule for the inverse of $f: (-\infty, \frac{1}{3}) \rightarrow R$, where $f(x) = 2\sqrt{1-3x}$ is

A $f^{-1}: (-\infty, \frac{1}{3}) \to R$, where $f^{-1}(x) = -\frac{x^2}{12} + \frac{1}{3}$ B $f^{-1}: [0, \infty) \to R$, where $f^{-1}(x) = -\frac{x^2}{12} + \frac{1}{3}$ C $f^{-1}: (0, \infty) \to R$, where $f^{-1}(x) = -\frac{x^2}{12} + \frac{1}{3}$ D $f^{-1}: (-\infty, 0) \to R$, where $f^{-1}(x) = -\frac{x^2}{12} + \frac{1}{3}$ E $f^{-1}: (0, \infty) \to R$, where $f^{-1}(x) = -\frac{x^2}{6} + \frac{1}{3}$

Question 20

The *x* and *y* intercepts of $y = \log_e(2x + 1) + 3$ are respectively

A
$$\frac{1-e^{3}}{2e^{3}}$$
 and 3
B 3 and $\frac{1-e^{3}}{2e^{3}}$
C $-\frac{1}{2}$ and 3
D 3 and $\frac{e^{3}-1}{2}$
E 3 and $e^{-3} + \frac{1}{2}$

If $3e^{2x} - 17e^x + 10 = 0$ then the solutions for *x* are

A
$$\frac{2}{3}$$
 and 5
B $\log_{10}\frac{2}{3}$ and $\log_{10}5$
C $\log_e 2 - \log_e 3$ and $\log_e 5$
D $\log_e 2 + \log_e 3$ and $\log_e 5$
E $\frac{\log_e 2}{\log_e 3}$ and $\log_e 5$

Question 22

If $\log_2(2x) - 5\log_2(x-1) - \log_2(y) = 2$ then *y* equals

$$A \qquad \frac{x}{(x-1)^5}$$

$$B \qquad \frac{x}{2(x-1)^5}$$

$$C \qquad \frac{8x}{(x-1)^5}$$

$$D \qquad \frac{2(x-1)^5}{x}$$

$$E \qquad \frac{(x-1)^5}{x}$$

Question 23

The number of currants in small buns is normally distributed with a mean of 10 and a variance of 9. The probability of a randomly chosen bun having more than 15 currants is closest to

- A 0.9522
- **B** 0.2892
- **C** 0.0478
- **D** 0.7107
- E 0.0332

A punnet contains 16 strawberries, of which 12 are perfect and the rest are damaged. Ten strawberries are taken from the punnet at random to decorate a dessert. The probability that no more than one of the strawberries selected is damaged is

$$\begin{split} \mathbf{A} & \ \ ^{16}\mathbf{C}_{10} \times \ (0.75)^9 \times \ (0.25)^1 \\ \mathbf{B} & \ \ ^{16}\mathbf{C}_{11} \times \ ^{4}\mathbf{C}_1 + \ ^{16}\mathbf{C}_{10} \times \ ^{4}\mathbf{C}_2 \div \ ^{16}\mathbf{C}_{10} \\ \mathbf{C} & \ \ (^{12}\mathbf{C}_9 \times \ ^{4}\mathbf{C}_1 + \ ^{12}\mathbf{C}_{10} \times \ ^{4}\mathbf{C}_0) \div \ ^{16}\mathbf{C}_{10} \\ \mathbf{D} & \ \ 1 - (^{12}\mathbf{C}_1 \times \ ^{4}\mathbf{C}_1 + \ ^{12}\mathbf{C}_0 \times \ ^{4}\mathbf{C}_2) \div \ ^{16}\mathbf{C}_{10} \\ \mathbf{E} & \ \ 1 - (^{16}\mathbf{C}_{10} \times \ (0.75)^9 \times \ (0.25)^1) \end{split}$$

Question 25

The random variable *X* has the following probability distribution, where 0 < k < 1.

x	0	2
$\Pr(X = x)$	k	1 <i>k</i>

The standard deviation of X is

- **A** 2-2k **B** $2\sqrt{k(k-1)}$ **C** 4k(1-k)**D** $2\sqrt{k(1-k)}$
- E $2\sqrt{k(1+k)}$

Question 26

If *X* is a normally distributed random variable with a mean $\mu = 1$, and standard deviation $\sigma = 1.5$ and $Pr(\mu - k < X < \mu + k) = 0.7$, then *k* is closest to

- A 1.555B 1.037
- C 0.787
- **D** 0.524
- E 2.332

A box contains a number of Chocolates and Toffees and a random selection of the sweets is made. If *A* is the number of chocolates in the sample when a sample is taken without replacement, and *B* is the number of chocolates in the sample when a sample is selected with replacement then

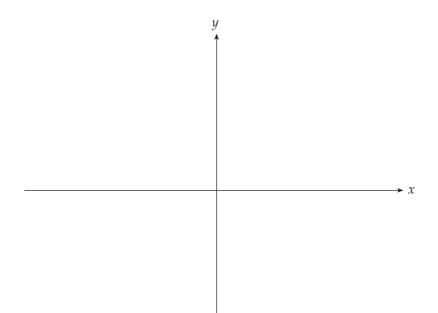
- **A** E(A) = E(B) and Var(A) = Var(B)
- **B** E(A) > E(B) and Var(A) > Var(B)
- **C** E(A) < E(B) and Var(A) < Var(B)
- **D** E(A) = E(B) and Var(A) > Var(B)
- **E** E(A) = E(B) and Var(A) < Var(B)

Short Answer (23 marks)

Question 1

An increasing function $f:(0, \frac{\pi}{2}) \rightarrow R$, where $f(x) = \tan(nx + k)$, with k > 0, has one x intercept at the point $(\frac{\pi}{4}, 0)$ and asymptotes at x = 0 and $x = \frac{\pi}{2}$.

a Sketch the function on the axes provided.



b Find the values of

i *n*

ii *k*.

2 + 2 = 4 marks

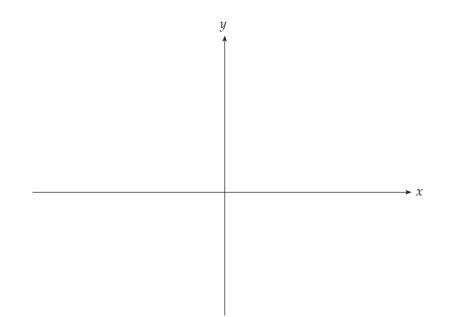
The points (-5, 1), (2, 8), (5, 6), (4, 3) and (8, 7) belong to a quartic curve.

- **a** Write down the equation of the quartic, giving the coefficients correct to three decimal places.
- **b** Find the equation of the normal to the curve where it cuts the *y*-axis. Give the gradient and the *y*-intercept correct to two decimal places.

c Find the average rate of change, correct to two decimal places, between the two local maximums of the quartic.

1 + 2 + 2 = 5 marks

a Sketch the graph of $y = f(x) = 3\log_e(2 - x)$, clearly labelling any cuts on the axes and asymptotes.



b Find f'(x).

3 + 1 = 4 marks

Let $f(x) = 2\sqrt{3x+2}$ and g(x) = x, with both functions having their largest possible domains.

a Solve $x = 2\sqrt{3x+2}$ algebraically. Give an exact answer.

b Find $f^{-1}(x)$. State the domain.

c Find correct to four decimal places the area enclosed by the graphs of $y = f^{-1}(x)$, y = g(x) and the *y*-axis.

2 + 2 + 3 = 7 marks

The probability of a baby being a girl is 0.49. Find, correct to 4 decimal places,

a the probability of a family with three children including at least 1 boy;

b the probability of a family with 3 children being all boys given that at least 1 child is a boy.

1 + 2 = 3 marks