THE

Surrey Hills North VIC 3127 ABN 20 607 374 020 Phone 9836 5021 Fax 9836 5025

MATHS METHODS 3 & 4
GROUP TRIAL EXAMINATION 2 **TRIAL EXAMINATION 2 P.O. Box 1180 SOLUTIONS 2005**

Question 1

a. i. Since the four supervisors have supervised the draws in the proportions given $p - q + p^2 + p^2 + p + 4q = 1$

$$
2p2 + 2p + 3q = 1
$$

2p(p+1)=1-3q
as required

(1 mark)

ii. Given that
$$
q = \frac{1}{8}
$$
,
\n $2p(p+1)=1-3q$
\nbecomes $2p(p+1)=1-\frac{3}{8}$
\n $2p^2 + 2p = \frac{5}{8}$
\n $16p^2 + 16p = 5$
\n $16p^2 + 16p - 5 = 0$
\n $(4p+5)(4p-1)=0$
\n $p = -\frac{5}{4}$ or $p = \frac{1}{4}$
\nSince $p > 0$, $p = \frac{1}{4}$
\nSo the proportion of nights that George supervised was $p - q = \frac{1}{4} - \frac{1}{8}$
\n $= \frac{1}{8}$
\nSo the probability that George was the supervisor on a particular night was $\frac{1}{8}$
\n(1 mark)

b. i. There are 25 balls, 13 odd numbered and 12 even numbered balls. The probability that the first one is odd-numbered is 25 $\frac{13}{25}$.

ii. Method 1

Let *O*=odd numbered ball Let *N*=not an odd numbered ball Pr (exactly two odd numbered balls chosen) $= Pr(O, O, N) + Pr(O, N, O) + Pr(N, O, O)$ 575 $=\frac{234}{1}$ 3 13800 $=\frac{1872}{12000} \times$ 23 12 24 13 25 12 23 12 24 12 25 13 23 12 24 12 25 $=\frac{13}{22} \times \frac{12}{22} \times \frac{12}{22} + \frac{13}{22} \times \frac{12}{22} \times \frac{12}{22} + \frac{12}{22} \times \frac{13}{22} \times$ **(1 mark)**

(1 mark)

Method 2

Use the Hypergeometric distribution formula since there is no replacement. Pr (exactly two balls are odd numbered)

$$
= Pr(X = 2)
$$
\n
$$
= \frac{{}^{D}C_{x} {}^{N-D}C_{n-x}}{{}^{N}C_{n}}
$$
 Hypergeometric Formula\n
$$
= \frac{{}^{13}C_{2} {}^{12}C_{1}}{{}^{25}C_{3}}
$$
\n
$$
= \frac{78 \times 12}{2300}
$$
\n
$$
= \frac{234}{575}
$$
\n(1 mark)

iii. Use the Hypergeometric distribution formula whereby $D = 13$, $x = 7$, $N = 25$ and $n = 15$

 $Pr(exactly 7 out of the 15 balls chosen are odd numbered)$

$$
= \frac{{}^{D}C_{x} {}^{N-D}C_{n-x}}{{}^{N}C_{n}}
$$

= $\frac{{}^{13}C_{7} {}^{12}C_{8}}{{}^{25}C_{15}}$ (1 mark)
= $\frac{1716 \times 495}{3268760}$
= 0.2599 (correct to 4 decimal places)

c. i. Because the ball is being replaced, we have a Binomial distribution where

$$
n = 3, p = \frac{1}{25} \text{ and } q = \frac{24}{25}.
$$

Pr(the ball numbered 16 appeared exactly once)
= Pr(X = 1)
= ${}^{n}C_{x}(p)^{x}(1-p)^{n-x}$
= ${}^{3}C_{1}(\frac{1}{25})^{1}(\frac{24}{25})^{2}$
= 0.1106 (correct to 4 decimal places)

ii. Pr(the ball numbered 16 appears at least once) $= Pr(X \geq 1)$ $= 1 - Pr(X = 0)$ $= 0.1153$ (correct to 4 decimal places) 25 24 25 $1^{-3}C_0\left(\frac{1}{2}\right)$ 0×3 $\left| \frac{3}{25} \right| \left| \frac{24}{25} \right|$ J $\left(\frac{24}{25}\right)$ \setminus \int^b J $\left(\frac{1}{25}\right)$ \setminus $= 1 - {}^{3}C_{0}$ **iii.** $Pr(X = 0) = {}^{n}C_{0} \left(\frac{9}{25}\right)^{0} \left(\frac{16}{25}\right)^{n}$ $(X = 0) = {}^{n}C_{0} \left| \frac{9}{25} \right| \left| \frac{10}{25} \right|$ $\left(\frac{16}{25}\right)$ \int^b $\left(\frac{9}{25}\right)$ $= 0 = {}^{n}C_{0}$ 16 $Pr(X = 0) = {}^{n}C_{0} \left(\frac{9}{2^{n}} \right)$ 0 $\frac{9}{25}$ $\frac{9}{25}$ (since there are 9 balls numbered with a **(1 mark)**

$$
0.044 = 1 \times 1 \times \left(\frac{16}{25}\right)^n
$$

So $0.044 = (0.64)^n$

$$
\log_{10}(0.044) = \log_{10}(0.64)^n
$$
 (1 mark)

$$
\log_{10}(0.044) = n \log_{10}(0.64)^n
$$

$$
n = \frac{\log_{10}(0.044)}{\log_{10}(0.64)}
$$

$$
n = 6.999...
$$

= 7 (closest whole number)

(1 mark)

(1 mark)

d. We have a Normal distribution with $\mu = 15$ and $\sigma = 1.5$

Method 1 Using the normal distribution cdf table

 $Pr(14 < X < 16)$ $= Pr(X < 16) - Pr(X < 14)$ $= Pr(z < 0.667) - (1 - Pr(z < 0.667))$ $= Pr(z < 0.667) - 1 + Pr(z < 0.667)$ $= 2 \times Pr(z < 0.667) - 1$ $= 0.4954$ $= 2 \times 0.7477 - 1$ **(1 mark)**

So 49.5% (to 1 decimal place) of balls supplied by the manufacturer are actually used.

Method 2 Using a graphics calculator

 $Pr(14 < X < 16) = 0.4950$ (using -0.6666666 and 0.6666666 as the lower and upper bounds respectively)

So 49.5% (to 1 decimal place) of balls supplied by the manufacturer are actually used. **(2 marks)**

Total 15 marks

Question 2

a. The minimum distance of the shelf from the floor is 120 − 25 = 95cm because the minimum value that $sin(\frac{\pi}{200})$ 300 $\sin(\frac{\pi t}{200})$ can have is –1. Hence, $120 + 25 \times -1 = 95$ cm. **(1 mark)**

b. The maximum distance of the shelf from the floor similarly is $120 + 25 = 145$ cm. So the vertical distance that the shelf moves through is $145 - 95 = 50$ cm.

(1 mark)

c.

$$
d(75) = 120 + 25 \sin(\frac{75\pi}{300})
$$

= 120 + 25 \sin(\frac{\pi}{4})
= 120 + \frac{25\sqrt{2}}{2}
At $t = 75$ seconds, the shelf is $\left(120 + \frac{25\sqrt{2}}{2}\right)$ cm above the floor.

d. Sketch the graphs of $d = 120 + 25 \sin(\frac{m}{200})$ and $d = 100$ 300 $d = 120 + 25\sin(\frac{\pi t}{200})$ and $d = 100$. Note that the first 10 minutes of movement corresponds to between $t = 0$ and $t = 600$ secs. Make sure that your window extends to $X = 600$. Find the two points of intersection that occur in this domain. They are (388 ⋅ 55,100) and (511⋅ 45,100). The shelf is exactly 1 metre above the floor at $t = 388 \cdot 55$ and at $t = 511 \cdot 45$ (to 2 decimal places).

(2 marks)

e. The rate at which the distance of the shelf above the floor is changing is given by $d'(t)$.

 $(t) = 120 + 25 \sin(\frac{\pi t}{200})$ $(t) = 25 \times \frac{\pi}{200} \cos(\frac{\pi}{200})$) 300 cos(12 300 cos(300 So $d'(t) = 25 \times \frac{\pi}{200} \cos(\frac{\pi t}{200})$ 300 Now $d(t) = 120 + 25 \sin(\frac{\pi t}{2})$ $=\frac{\pi}{12}$ cos($\frac{\pi t}{12}$

(1 mark)

) 300 (Note that if $y = 25\sin(\frac{\pi t}{28})$

)) 300 cos(12) 300 cos(300 $=\frac{25\pi}{200}$ cos($\frac{\pi t}{200}$ 300 $= 25 \cos(u) \cdot \frac{\pi}{20}$ so, $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$ Chain rule 300 *dt* $25\cos(u)$ then, $y = 25\sin(u)$ $=\frac{\pi}{12}\cos(\frac{\pi t}{2})$ *dt du du dy dt* $\frac{dy}{dx} = \frac{dy}{dx}$. *du* π *du* $\frac{dy}{dx}$ = 25 cos(*u*) $\frac{du}{dx}$ = $y = 25 \sin(u)$ where $u = \frac{\pi d}{20}$ At $t = 50$, $(50) = \frac{\pi}{12} \cos(\frac{\pi \times 50}{200})$ $= 0.23$ cm / sec 300 $\cos(\frac{\pi \times 50}{200})$ $d'(50) = \frac{\pi}{12} \cos(\frac{\pi x}{30})$

(1 mark)

f. From part e., $d'(t) = \frac{\pi}{12} \cos(\frac{\pi}{200})$ 300 cos($d'(t) = \frac{\pi}{12} \cos(\frac{\pi t}{300}).$ Graph this function.

> This function intersects the horizontal axis at $t = 150$ and $t = 450$. Between these two times the rate of change of the height of the shelf above the floor is negative; that is, $d'(t) < 0$ for $150 < t < 450$.

300

(2 marks)

$$
120 + 25\sin(\frac{\pi t}{300}) = 120 + 50\cos(\frac{\pi t}{300})
$$

\n
$$
25\sin(\frac{\pi t}{300}) = 50\cos(\frac{\pi t}{300})
$$

\n
$$
\frac{\sin(\frac{\pi t}{300})}{\cos(\frac{\pi t}{300})} = \frac{50}{25}
$$

\n
$$
\tan(\frac{\pi t}{300}) = 2
$$

\n
$$
\frac{\pi t}{300} = 1.1071..., \pi + 1.1071..., 2\pi + 1.1071..., ...
$$

\n
$$
t = 105.7249..., 405.7249..., 705.7249..., ...
$$

\nOver the domain $t \in [0,600]$, we have

t =105.7249..., 405.7249...

So the two shelves are at the same height at $t = 105 \cdot 72$ and $t = 405 \cdot 72$ (to 2 decimal places).

(1 mark) Total 12 marks

Question 3

a. Use a graphics calculator to sketch the function and calculate the *x*-intercept. The answer is $x = 1 \cdot 27$ (correct to 2 decimal places).

(1 mark)

b. The function $f(x) = \log_e(2x) - 2x + x^2$ is not defined for $x \le 0$ because $\log_e(2x)$ is not defined for $x \leq 0$.

(1 mark)

c. The inverse function $f^{-1}(x)$ exists because as we see from the graph, the graph of $y = f(x)$ is 1:1.

e. Since the graph of $y = f^{-1}(x)$ is the reflection of the graph of $y = f(x)$ in the line *y* = *x*, the *y*-intercept of the graph of $y = f^{-1}(x)$ is the *x*-intercept of the graph of $y = f(x)$ which is 1.27 (correct to 2 decimal places) from part a.

(1 mark)

f.
$$
f(x) = \log_e(2x) - 2x + x^2
$$
, $x > 0$
\n $f'(x) = \frac{2}{2x} - 2 + 2x$
\n $= \frac{1}{x} - 2 + 2x$
\nA stationary point occurs when $f'(x) = 0$
\nLet $\frac{1}{x} - 2 + 2x = 0$ (1 mark)
\n $1 - 2x + 2x^2 = 0$, $x \ne 0$

Now,

d.

$$
\Delta = b2 - 4ac
$$

= (-2)² - 4 × 2 × 1
= -4

Since $\Delta < 0$, there are no solutions to the equation $2x^2 - 2x + 1 = 0$ and hence the graph of $y = f(x)$ has no stationary points.

(1 mark)

7

g. The rate of change of $f(x)$ with respect to *x* is given by $f'(x)$.

From part f. $f'(x) = \frac{1}{2} - 2 + 2x$ *x* $f'(x) = \frac{1}{2} - 2 + 2x$. A sketch of $y = f'(x)$ is shown below.

(1 mark)

From the graph we see that the function $f'(x)$ is always positive so the rate of change of $f(x)$ with respect to *x* is always positive.

(1 mark)

h.
$$
f(x) = \log_e(2x) - 2x + x^2
$$
, $x > 0$
\n $f'(x) = \frac{1}{x} - 2 + 2x$ from part f.
\nNow, $f'(3) = \frac{1}{3} - 2 + 2 \times 3$
\n $= \frac{13}{3}$

So the gradient of the tangent to $y = f(x)$ a 3 $y = f(x)$ at $x = 3$ is $\frac{13}{2}$. Therefore the gradient of the normal to $y = f(x)$ 13 $y = f(x)$ at $x = 3$ is $\frac{-3}{12}$.

(1 mark)

Also
$$
f(3) = \log_e(6) - 2 \times 3 + 3^2
$$

\t\t\t $= \log_e(6) + 3$
\nThe equation of the normal to $f(x)$ at $x = 3$ is given by
\t\t\t $y - y_1 = m(x - x_1)$
\t\t\twhere $m = \frac{-3}{13}$ and $(x_1, y_1) = (3, \log_e(6) + 3)$
\nSo $y - (\log_e(6) + 3) = \frac{-3}{13}(x - 3)$ is the equation of the normal.

The area required is shaded in the diagram above and is that of a triangle with base of width $\frac{13}{2} \log_e (6) + 16$ 3 $\frac{13}{3} \log_e(6) + 16$ and height of $\log_e(6) + \frac{48}{13}$.

(1 mark)

 $(6) + \frac{48}{12}$ Ј $\left(\log_e(6) + \frac{48}{12}\right)$ l \mathcal{R} + $\log_e(6)$ + $\big)$ $\left(\frac{13}{2} \log_e(6) + 16\right)$ J $=\frac{1}{2}\times\left(\frac{13}{2}\log_e(6)+\right)$ $=\frac{1}{2} \times \text{base} \times \text{height}$ 13 $\log_e(6) + 16$ $\times \left(\log_e(6) + \frac{48}{12} \right)$ 3 13 2 1 2 Area required = $\frac{1}{2}$ $e^{(0) + 10}$ | \sim | 10 *e* So, 13 $, b = 16$ and $c = \frac{48}{12}$ 3 $a = \frac{13}{2}$, $b = 16$ and $c = \frac{48}{12}$.

(1 mark) Total 14 marks

2

©THE HEFFERNAN GROUP 2005 *Maths Methods 3 & 4 Trial Exam 2 solutions*

When
$$
t = 0
$$
, $N(t) = 50 \times e^{(0-0+1)}$
\n $= 50e$
\n $= 136$ to the nearest whole number
\n**b.** According to this model the population of a colony can never equal zero because
\n $N(t) = 50 \times e^{(t^2 - qt + 1)}$ and $50 \neq 0$ and $e^{(t^2 - qt + 1)} \neq 0$ so $N(t) \neq 0$. That is, there is no number
\nthat you can raise *e* to, in order to equal zero.

2

t

+

 $N(t) = 50 \times e^{(t^2 - qt + 1)}, \quad t \ge 0, q \ge 0$

(1 mark)

(1 mark)

(1 mark)

c. Let
$$
q = 0
$$
 for a particular colony.
So, $N(t) = 50 \times e^{(t^2 - qt + 1)}$

becomes
$$
N(t) = 50 \times e^{(t^2+1)}
$$

\nLet $y = 50 \times e^{(t^2+1)}$
\nNow $y = 50 \times e^{(u)}$ w
\n
$$
\frac{dy}{du} = 50 \times e^{(u)}
$$
\n
$$
\frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}
$$

Now $y = 50 \times e^{(u)}$ where $u = t^2 + 1$ $= 50 \times e^{(u)}$ and $\frac{du}{dt} = 2t$ So $\frac{dy}{dx} = 50 \times e^{(u)} \cdot 2t$ $=\frac{dy}{dx} \cdot \frac{du}{dx}$ Chain rule *dt dy dt du du dy dt* $e^{(u)}$ and $\frac{du}{dt}$

$$
=100t\times e^{(t^2+1)} \qquad (1 mark)
$$

Now $t \ge 0$ and $e^{t^2+1} > 0$ so $100t \times e^{t^2+1} > 0$ and therefore $\frac{dy}{dt} > 0$ *dt* $\frac{dy}{dx} > 0$ so the population is increasing.

$$
\mathbf{d}.
$$

d. Now
$$
N(t) = 50 \times e^{(t^2 - qt + 1)}
$$

\nLet $y = 50 \times e^{(t^2 - qt + 1)}$
\n $y = 50 \times e^u$ where $u = t^2 - qt + 1$
\n
$$
\frac{dy}{du} = 50 \times e^u
$$
\n
$$
\frac{du}{dt} = 2t - q
$$
\n
$$
\frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}
$$
\n
$$
\frac{dy}{dt} = 50 \times e^u \times (2t - q)
$$
\n
$$
= 50(2t - q)e^{(t^2 - qt + 1)}
$$
\n(1 mark)
\nNow, a minimum occurs when $\frac{dy}{dt} = 0$.
\nSo, $50(2t - q)e^{(t^2 - qt + 1)} = 0$
\nNow $50 \neq 0$ and $e^{(t^2 - qt + 1)} \neq 0$
\nSo $2t - q = 0$
\n $t = \frac{q}{2}$ (*) (1 mark)

_ (*)

Question 4 a. ()

Also, the minimum that occurs is 50. () So 1 0 1 becomes 50 50 So 50 2 0 1 1 1 1 2 2 2 2 − + = = = = × = × − + − + − + − + *t qt e e e e N t e t qt t qt t qt t qt* **(1 mark)** From (*), 2 *q t* = 2 since 0 4 0 4 1 1 0 4 2 So, 2 2 2 2 = ≥ = − = − + = *q q q q q q* **(1 mark) (2 marks) f.** () 50 and 50 ¹ 2 = = [−] ⁺ *N e N tqt* The graphs of these functions intersect when () () () 1 0 2 − + = *t qt* 1 50 50 1 0 1 1 2 2 2 = = = − + − + − + *e e e e t qt t qt t qt* **(1 mark)** (2)1 2 50 [−] ⁺ = *^t ^t N e N* = 50 **(1 mark)**

11

e.

For 2 points of intersection, for example as shown in the diagram below, $\Delta > 0$.

(1 mark)

Consider the graph of $y = q^2 - 4$

We want the values of *q* for which $y = q^2 - 4 > 0$ i.e. we want $q < -2$ or $q > 2$. So the values of *q* for which the population of a mice colony would drop below 50 are $q > 2$ since $q \ge 0$.

(1 mark)

(Note: given that $t^2 - qt + 1 = 0$, if there is one point of intersection,

then
$$
\Delta = 0
$$

\n
$$
q^{2} - 4 \times 1 \times 1 = 0
$$

\n
$$
q^{2} - 4 = 0
$$

\n
$$
(q - 2)(q + 2) = 0
$$

\n
$$
q = +2 \text{ or } q = -2
$$

\nbut $q \ge 0$ so $q = 2$
\nthis confirms our answer to part d.)

Total 14 marks