THE HEFFERNAN GROUP

P.O. Box 1180 Surrey Hills North VIC 3127 ABN 20 607 374 020 Phone 9836 5021 Fax 9836 5025

MATHS METHODS 3 & 4 TRIAL EXAMINATION 2 SOLUTIONS 2005

Question 1

a.

i. Since the four supervisors have supervised the draws in the proportions given $p-q+p^2+p^2+p+4q=1$ $2p^2+2p+3q=1$

$$2p + 2p + 3q = 1$$

$$2p(p+1) = 1 - 3q$$

as required

(1 mark)

ii. Given that
$$q = \frac{1}{8}$$
,
 $2p(p+1)=1-3q$
becomes $2p(p+1)=1-\frac{3}{8}$
 $2p^2+2p=\frac{5}{8}$
 $16p^2+16p=5$
 $16p^2+16p-5=0$
 $(4p+5)(4p-1)=0$
 $p=-\frac{5}{4}$ or $p=\frac{1}{4}$
Since $p>0$, $p=\frac{1}{4}$
So the proportion of nights that George supervised was $p-q=\frac{1}{4}-\frac{1}{8}$
 $=\frac{1}{8}$
So the probability that George was the supervisor on a particular night was $\frac{1}{8}$
.
.
.
(1 mark)

b. i. There are 25 balls, 13 odd numbered and 12 even numbered balls. The probability that the first one is odd-numbered is $\frac{13}{25}$.

ii. Method 1

Let O = odd numbered ballLet V = not an odd numbered ballPr(exactly two odd numbered balls chosen) $= \Pr(O, O, N) + \Pr(O, N, O) + \Pr(N, O, O) \qquad (1 \text{ mark})$ $= \frac{13}{25} \times \frac{12}{24} \times \frac{12}{23} + \frac{13}{25} \times \frac{12}{24} \times \frac{12}{23} + \frac{12}{25} \times \frac{13}{24} \times \frac{12}{23}$ $= \frac{1872}{13800} \times 3$ $= \frac{234}{575}$

(1 mark)

Method 2

Use the Hypergeometric distribution formula since there is no replacement. Pr(exactly two balls are odd numbered)

$$= \Pr(X = 2)$$

$$= \frac{{}^{D}C_{x} {}^{N-D}C_{n-x}}{{}^{N}C_{n}}$$
 Hypergeometric Formula
$$= \frac{{}^{13}C_{2} {}^{12}C_{1}}{{}^{25}C_{3}}$$

$$= \frac{78 \times 12}{2300}$$

$$= \frac{234}{575}$$
(1 mark)

Note that	D = total number of odd numbered balls N = total number of balls
	n = number of balls in the sample x = number of odd numbered balls in the sample

iii. Use the Hypergeometric distribution formula whereby D = 13, x = 7, N = 25 and n = 15

Pr(exactly 7 out of the 15 balls chosen are odd numbered)

$$= \frac{{}^{D}C_{x} {}^{N-D}C_{n-x}}{{}^{N}C_{n}}$$

= $\frac{{}^{13}C_{7} {}^{12}C_{8}}{{}^{25}C_{15}}$ (1 mark)
= $\frac{1716 \times 495}{3268760}$
= 0 \cdot 2599 (correct to 4 decimal places)

c.

i.

Because the ball is being replaced, we have a Binomial distribution where

$$n = 3, p = \frac{1}{25} \text{ and } q = \frac{24}{25}.$$

Pr(the ball numbered 16 appeared exactly once)

$$= \Pr(X = 1)$$

$$= {}^{n}C_{x}(p)^{x}(1-p)^{n-x}$$

$$= {}^{3}C_{1}\left(\frac{1}{25}\right)^{1}\left(\frac{24}{25}\right)^{2}$$

$$= 0.1106 \text{ (correct to 4 decimal places)}$$

ii. Pr(the ball numbered 16 appears at least once) $= \Pr(X \ge 1)$ $=1 - \Pr(X = 0)$ (1 mark) $=1-{}^{3}C_{0}\left(\frac{1}{25}\right)^{0}\left(\frac{24}{25}\right)^{3}$ = 0.1153 (correct to 4 decimal places) (1 mark) $\Pr(X=0) = {^{n}C_{0}} \left(\frac{9}{25}\right)^{0} \left(\frac{16}{25}\right)^{n}$ (since there are 9 balls numbered with a iii. single digit) $0 \cdot 044 = 1 \times 1 \times \left(\frac{16}{25}\right)^n$ (1 mark) So $0 \cdot 044 = (0 \cdot 64)^n$ $\log_{10}(0.044) = \log_{10}(0.64)^n$ $\log_{10}(0 \cdot 044) = n \log_{10}(0 \cdot 64)$ $n = \frac{\log_{10}(0 \cdot 044)}{\log_{10}(0 \cdot 64)}$

> $= 6 \cdot 999...$ = 7 (closest whole number)

> > (1 mark)

d. We have a Normal distribution with $\mu = 15$ and $\sigma = 1.5$

Method 1 Using the normal distribution cdf table

Pr(14 < X < 16)= Pr(X < 16) - Pr(X < 14) (1 mark) = Pr(z < 0.667) - (1 - Pr(z < 0.667)) = Pr(z < 0.667) - 1 + Pr(z < 0.667) = 2 × Pr(z < 0.667) - 1 = 2 × 0.7477 - 1 = 0.4954

So 49.5% (to 1 decimal place) of balls supplied by the manufacturer are actually used.

Method 2 Using a graphics calculator

So 49.5% (to 1 decimal place) of balls supplied by the manufacturer are actually used. (2 marks)

Total 15 marks

Question 2

a. The minimum distance of the shelf from the floor is 120 - 25 = 95cm because the minimum value that $sin(\frac{\pi t}{300})$ can have is -1. Hence, $120 + 25 \times -1 = 95$ cm. (1 mark)

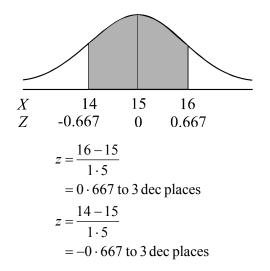
b. The maximum distance of the shelf from the floor similarly is 120 + 25 = 145 cm. So the vertical distance that the shelf moves through is 145 - 95 = 50 cm.

(1 mark)

c.

$$d(75) = 120 + 25 \sin(\frac{75\pi}{300})$$

= 120 + 25 sin($\frac{\pi}{4}$)
= 120 + $\frac{25\sqrt{2}}{2}$
At $t = 75$ seconds, the shelf is $\left(120 + \frac{25\sqrt{2}}{2}\right)$ cm above the floor.



d. Sketch the graphs of $d = 120 + 25 \sin(\frac{\pi t}{300})$ and d = 100. Note that the first 10 minutes of movement corresponds to between t = 0 and t = 600 secs. Make sure that your window extends to X = 600. Find the two points of intersection that occur in this domain. They are $(388 \cdot 55,100)$ and $(511 \cdot 45,100)$. The shelf is exactly 1 metre above the floor at $t = 388 \cdot 55$ and at $t = 511 \cdot 45$ (to 2 decimal places).

(2 marks)

(1 mark)

e. The rate at which the distance of the shelf above the floor is changing is given by d'(t).

Now $d(t) = 120 + 25 \sin(\frac{\pi t}{300})$ So $d'(t) = 25 \times \frac{\pi}{300} \cos(\frac{\pi t}{300})$ $= \frac{\pi}{12} \cos(\frac{\pi t}{300})$

(Note that if $y = 25 \sin(\frac{\pi t}{300})$

then, $y = 25 \sin(u)$ where $u = \frac{\pi t}{300}$ $\frac{dy}{du} = 25 \cos(u)$ $\frac{du}{dt} = \frac{\pi}{300}$ so, $\frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}$ Chain rule $= 25 \cos(u) \cdot \frac{\pi}{300}$ $= \frac{25\pi}{300} \cos(\frac{\pi t}{300})$ $= \frac{\pi}{12} \cos(\frac{\pi t}{300}))$ At t = 50, $d'(50) = \frac{\pi}{12} \cos(\frac{\pi \times 50}{300})$ $= 0 \cdot 23 \text{ cm/sec}$

(1 mark)

f. From part e., $d'(t) = \frac{\pi}{12} \cos(\frac{\pi t}{300})$. Graph this function.

This function intersects the horizontal axis at t = 150 and t = 450. Between these two times the rate of change of the height of the shelf above the floor is negative; that is, d'(t) < 0 for 150 < t < 450.

(2 marks)

g.

The two shelves are at the same height above the floor when $h(t) = h_1(t)$; that is, when

$$120 + 25 \sin(\frac{\pi t}{300}) = 120 + 50 \cos(\frac{\pi t}{300})$$

$$25 \sin(\frac{\pi t}{300}) = 50 \cos(\frac{\pi t}{300})$$
(1 mark)
$$\frac{\sin(\frac{\pi t}{300})}{\cos(\frac{\pi t}{300})} = \frac{50}{25}$$

$$\tan(\frac{\pi t}{300}) = 2$$
(1 mark)
$$\frac{\pi t}{300} = 1.1071..., \pi + 1.1071..., 2\pi + 1.1071..., ...$$

$$t = 105.7249..., 405.7249..., 705.7249..., ...$$

$$\frac{S}{T} = C$$
Over the domain $t \in [0,600]$, we have

t = 105.7249..., 405.7249...

So the two shelves are at the same height at $t = 105 \cdot 72$ and $t = 405 \cdot 72$ (to 2 decimal places).

(1 mark) Total 12 marks

Question 3

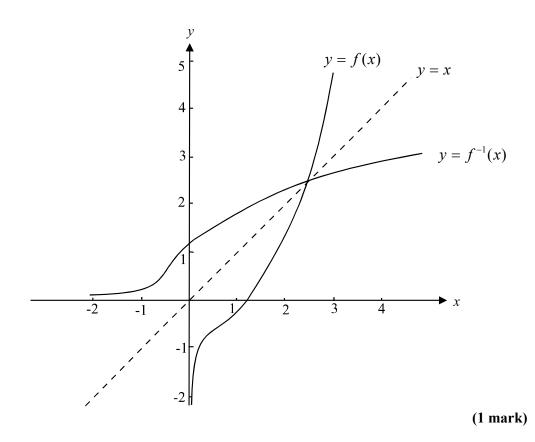
a. Use a graphics calculator to sketch the function and calculate the *x*-intercept. The answer is $x = 1 \cdot 27$ (correct to 2 decimal places).

(1 mark)

b. The function $f(x) = \log_e(2x) - 2x + x^2$ is not defined for $x \le 0$ because $\log_e(2x)$ is not defined for $x \le 0$.

(1 mark)

c. The inverse function $f^{-1}(x)$ exists because as we see from the graph, the graph of y = f(x) is 1:1.



7

e. Since the graph of $y = f^{-1}(x)$ is the reflection of the graph of y = f(x) in the line y = x, the *y*-intercept of the graph of $y = f^{-1}(x)$ is the *x*-intercept of the graph of y = f(x) which is 1.27 (correct to 2 decimal places) from part a.

(1 mark)

f.
$$f(x) = \log_{e}(2x) - 2x + x^{2}, \quad x > 0$$
$$f'(x) = \frac{2}{2x} - 2 + 2x$$
$$= \frac{1}{x} - 2 + 2x$$
A stationary point occurs when $f'(x) = 0$

Let
$$\frac{1}{x} - 2 + 2x = 0$$
 (1 mark)
 $1 - 2x + 2x^2 = 0, x \neq 0$
Now, $\Delta = b^2 - 4ac$
 $= (-2)^2 - 4 \times 2 \times 1$
 $= -4$

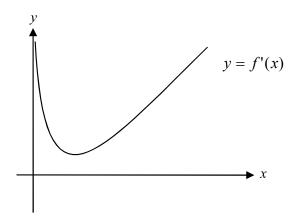
Since $\Delta < 0$, there are no solutions to the equation $2x^2 - 2x + 1 = 0$ and hence the graph of y = f(x) has no stationary points.

(1 mark)

d.

g. The rate of change of f(x) with respect to x is given by f'(x).

From part f. $f'(x) = \frac{1}{x} - 2 + 2x$. A sketch of y = f'(x) is shown below.



(1 mark)

From the graph we see that the function f'(x) is always positive so the rate of change of f(x) with respect to x is always positive.

(1 mark)

h.

$$f(x) = \log_{e}(2x) - 2x + x^{2}, \quad x > 0$$

$$f'(x) = \frac{1}{x} - 2 + 2x \qquad \text{from part f.}$$

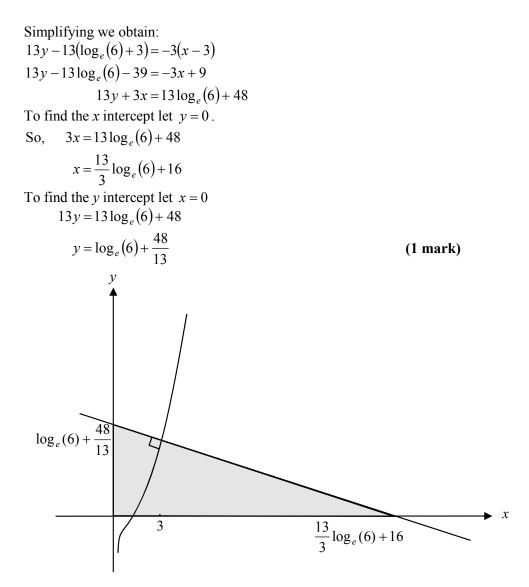
Now,
$$f'(3) = \frac{1}{3} - 2 + 2 \times 3$$

$$= \frac{13}{3}$$

So the gradient of the tangent to y = f(x) at x = 3 is $\frac{13}{3}$. Therefore the gradient of the normal to y = f(x) at x = 3 is $\frac{-3}{13}$.

Also
$$f(3) = \log_e(6) - 2 \times 3 + 3^2$$

 $= \log_e(6) + 3$
The equation of the normal to $f(x)$ at $x = 3$ is given by
 $y - y_1 = m(x - x_1)$
where $m = \frac{-3}{13}$ and $(x_1, y_1) = (3, \log_e(6) + 3)$
So $y - (\log_e(6) + 3) = \frac{-3}{13}(x - 3)$ is the equation of the normal.
(1 mark)



The area required is shaded in the diagram above and is that of a triangle with base of width $\frac{13}{3}\log_e(6)+16$ and height of $\log_e(6)+\frac{48}{13}$.

(1 mark)

Area required =
$$\frac{1}{2} \times \text{base} \times \text{height}$$

= $\frac{1}{2} \times \left(\frac{13}{3}\log_e(6) + 16\right) \times \left(\log_e(6) + \frac{48}{13}\right)$
So, $a = \frac{13}{3}$, $b = 16$ and $c = \frac{48}{13}$.

(1 mark) Total 14 marks

©THE HEFFERNAN GROUP 2005

 $t = \frac{q}{2} \qquad - \qquad (*)$

Maths Methods 3 & 4 Trial Exam 2 solutions

(1 mark)

Now
$$t \ge 0$$
 and $e^{t^2+1} > 0$ so $100t \times e^{t^2+1} > 0$ and therefore $\frac{dy}{dt} >$
increasing.
Now $N(t) = 50 \times e^{(t^2-qt+1)}$
Let $y = 50 \times e^{(t^2-qt+1)}$
 $y = 50 \times e^u$ where $u = t^2 - qt + 1$
 $\frac{dy}{du} = 50 \times e^u$ $\frac{du}{dt} = 2t - q$
 $\frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}$
 $\frac{dy}{dt} = 50 \times e^u \times (2t - q)$
 $= 50(2t - q)e^{(t^2-qt+1)}$ (1 mark)

 $0(2t-q)\epsilon$ Now, a minimum occurs when $\frac{dy}{dt} = 0$. $50(2t-q)e^{(t^2-qt+1)} = 0$ So, Now $50 \neq 0$ and $e^{(t^2 - qt + 1)} \neq 0$ So 2t - q = 0

->0 so the population is

(1 mark)

(1 mark)

b. According to this model the population of a colony can never equal zero because
$$N(t) = 50 \times e^{(t^2 - qt+1)}$$
 and $50 \neq 0$ and $e^{(t^2 - qt+1)} \neq 0$ so $N(t) \neq 0$. That is, there is no number that you can raise *e* to, in order to equal zero. (1 mark)

(1 mark)

= 136 to the nearest whole number

 $N(t) = 50 \times e^{(t^2 - qt + 1)}, \quad t \ge 0, q \ge 0$

When t = 0, $N(t) = 50 \times e^{(0-0+1)}$

According to this model the population of a color
$$N(t) = 50 \times e^{(t^2 - qt+1)}$$
 and $50 \neq 0$ and $e^{(t^2 - qt+1)} \neq 0$ so that you can raise *e* to, in order to equal zero.
Let $q = 0$ for a particular colony.
So, $N(t) = 50 \times e^{(t^2 - qt+1)}$

= 50e

be L No

Question 4

a.

c.

comes
$$N(t) = 50 \times e^{(t^2+1)}$$

et $y = 50 \times e^{(t^2+1)}$
by $y = 50 \times e^{(u)}$ where $u = 1$

et
$$y = 50 \times e^{(t^2+1)}$$

w $y = 50 \times e^{(u)}$ where $u = t^2 + 1$
 $\frac{dy}{du} = 50 \times e^{(u)}$ and $\frac{du}{dt} = 2t$
 $\frac{dy}{dt} = \frac{dy}{du} \cdot \frac{du}{dt}$ Chain rule

 $\frac{dy}{dt} = 50 \times e^{(u)} \cdot 2t$

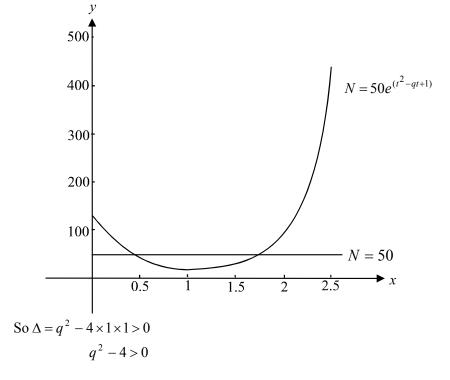
 $= 100t \times e^{\left(t^2 + 1\right)}$

d.

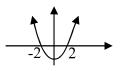
Also, the minimum that occurs is 50.
So
$$N(t) = 50 \times e^{t^2 - qt + 1}$$

becomes $50 = 50 \times e^{t^2 - qt + 1}$
 $1 = e^{t^2 - qt + 1}$
So $t^2 - qt + 1 = 0$ (1 mark)
From (*), $t = \frac{q}{2}$
So, $\frac{q^2}{4} - \frac{q^2}{2} + 1 = 0$
 $1 - \frac{q^2}{4} = 0$
 $q^2 = 4$
 $q = 2 \text{ since } q \ge 0$ (1 mark)
c. (1 mark)
f. $N = 50e^{(t^2 - qt + 1)}$ and $N = 50$
The graphs of these functions intersect when
 $50e^{(t^2 - qt + 1)} = 1$
 $e^{t^2 - qt + 1} = 0$ (1 mark)

For 2 points of intersection, for example as shown in the diagram below, $\Delta > 0$.



(1 mark)



We want the values of q for which $y = q^2 - 4 > 0$ i.e. we want q < -2 or q > 2. So the values of q for which the population of a mice colony would drop below 50 are q > 2 since $q \ge 0$.

(1 mark)

(Note: given that $t^2 - qt + 1 = 0$, if there is one point of intersection, then $\Delta = 0$

$$q^{2} - 4 \times 1 \times 1 = 0$$

$$q^{2} - 4 \times 1 \times 1 = 0$$

$$(q - 2)(q + 2) = 0$$

$$q = +2 \text{ or } q = -2$$
but $q \ge 0$ so $q = 2$
this confirms our answer to part d.)

Total 14 marks