VCE 2005 Mathematical Methods Trial Examination 1

Suggested Solutions

© Kilbaha Multimedia Publishing 2005

Kilbaha Multimedia Publishing ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: 03 9817 5374 Fax: 03 9817 4334 chemas@chemas.com www.chemas.com

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from Copyright Agency Limited. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.
- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute this electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute this printed file to the students at the school for their exclusive use.
- The Word file is for use ONLY within the school
- It may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the file must carry this copyright notice
- Commercial use of this material is expressly prohibited

Question 1 C	Question 2 D
Pr(X=1) + Pr(X=4) = 0.1 + 0.3 = 0.4	$2\Pr(X > a) = 2[1 - \Pr(X < a)] = 2 - 2\Pr(X < a)$
Question 3 B	Question 4 A
$E(X) = n \frac{D}{N} = 6 \times \frac{4}{12} = 2$	Pr = BBBGG = $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{32}$
Question 5 A	Question 6 C
$\Pr(YY) + \Pr(RY) = \frac{4}{10} \times \frac{3}{9} + \frac{6}{10} \times \frac{4}{9} = \frac{2}{5}$	$2\cos(\frac{x}{2}) = 1$
	$\cos(\frac{x}{2}) = \frac{1}{2}$
	$\frac{x}{2} = \frac{\pi}{3}$
	$x = \frac{2\pi}{3}$
Question 7 E Amplitude = 2	$2\cos(\frac{x}{2}) = \sqrt{3}$
Translated 1 unit up∴not A or B	$r \sqrt{3}$
Period = $\frac{2\pi}{n} = \frac{\pi}{3} \Rightarrow n = 6$ not C	$\cos(\frac{\pi}{2}) = \frac{\sqrt{3}}{2} \qquad \qquad$
When $\theta = 0$, graph is a maximum \therefore a cos graph \therefore E	$\frac{x}{2} = \frac{\pi}{6}$
	$x = \frac{\pi}{3}$
	$\{x:\frac{\pi}{3} \le x \le \frac{2\pi}{3}\}$
Question 8 D	Question 9 E
$2 - 2\cos^2\theta = 3\cos\theta$	
$2\cos^2\theta + 3\cos\theta - 2 = 0$	$g(x) = f(x-1) = (x-1)^{3} - 2(x-1)^{2} - 8(x-1) - 5$
$(2\cos\theta - 1)(\cos\theta + 2) = 0$	$= x^{3} - 3x^{2} + 3x - 1 - 2(x^{2} - 2x + 1) - 8x + 8 - 5$
$\cos\theta = \frac{1}{2}$ or $\cos\theta = -2$	$=x^3-5x^2-x$
$-1 \le \cos \theta \le 1$	Question 10 A
$\therefore \cos \theta = \frac{1}{2}$	$y = a(x+1)^2 + 4$
$\frac{2}{\pi}5\pi$	$y = a(x-b)^2 + c$
$\Rightarrow \theta = \frac{\pi}{3}, \frac{3\pi}{3}$	$\therefore b = -1, c = 4$
$\pi 5\pi$	When $x = 0, y = 2$
Sum of solutions $= \frac{\pi}{3} + \frac{\pi}{3} = 2\pi$	$\Rightarrow 2 = a(0+1)^2 + 4$
	$\Rightarrow a + 4 = 2 \Rightarrow a = -2$

Question 11 C	Question 12 B
$g(x) = -(e^{x} - 2) = -e^{x} + 2 = -f(x) + 2$	$x = (y - 1)^2 - 5$
	$x+5=(y-1)^2$
	$y - 1 = \pm \sqrt{(x+5)}$
	$y = 1 \pm \sqrt{(x+5)}$ $y \ge 1, x \ge -5$
	$\therefore y = 1 + \sqrt{(x+5)}$
Question 13 E	Question 14 D
To have an inverse, the graph must be one $-$ to $-$	$\log_a(xy) = \log_a(x) + \log_a(y)$
one. The only graph here, taking the domain of that graph into consideration, that is not one – to – one is E	$\log_a(xy^4) = \log_a(x) + \log_a(y^4)$
	$\log_{a}(xy^{4}) = \log_{a}(x) + 4\log_{a}(y) = p(1)$
	$\log_a(\frac{y^3}{x}) = \log_a(y^3) - \log_a(x)$
	$\log_{a}(\frac{y^{3}}{x}) = 3\log_{a}(y) - \log_{a}(x) = q(2)$
	$(1) + (2) \rightarrow 7 \log_a(y) = p + q$
Question 15 B $x = 8^t$	$\rightarrow \log_a(y) = \frac{1}{7}(p+q)$
$\log_2 x = \log_2 8^t$	$4 \times (2) - 3 \times (1) \rightarrow -7 \log_a(x) = 4q - 3p$
$\log_2 x = t \log_2 2^3$	$\log_a(x) = \frac{1}{7}(3p - 4q)$
$\log_2 x = 3t \log_2 2$	/ 1
$\log_2 x = 3t$	$\log_a(x) + \log_a(y) = \frac{1}{7}(3p - 4q + p + q)$
	$\log_a(x) + \log_a(y) = \frac{4p - 3q}{7}$

Question 16 D

When $x = -\frac{1}{2}, y = 0$ When x = 1, y = 0

f(x) = (2x + 1)(x - 1) : can be written as the product of two real linear factors. Completing the square gives

$$f(x) = 2(x^{2} - \frac{1}{2}x - \frac{1}{2}) = 2(x^{2} - \frac{1}{2}x + \frac{1}{16} - \frac{1}{2} - \frac{1}{16})$$

$$f(x) = 2[(x - \frac{1}{4})^{2} - \frac{9}{16}] = 2(x - \frac{1}{4})^{2} - \frac{9}{8}$$

Between $x = -\frac{1}{2}$ and $x = 1$, where this graph cuts the X axis, the graph is negative.
 \therefore D is not true.

Question 17 E	Question 18 B
By dividing $x + 1$ into $2x + 5$ we get	$dy = 2e^{5-2x} = 8$
2x + 5 2 3	$\frac{1}{dx} = -2e = -8$
$\frac{1}{x+1} = 2 + \frac{1}{x+1}$	$e^{5-2x}=4$
This gives the graph of $\frac{3}{-}$ translated 1 unit to the left	$5 - 2x = \log_e 4$
x	$2x = 5 - \log_e 4$
with equation $r = -1$ and a horizontal asymptote	$x = \frac{5}{2} - \frac{1}{2} \log_{e} 4$
with equation $x = -1$ and a nonzontal asymptote	
with equation $y = 2$	$x = \frac{5}{2} - \log_e 4^{\frac{1}{2}}$
	5
	$x = \frac{1}{2} - \log_e 2$
	_
Question 19 A	Question 20 C
$\frac{dy}{dx} = \frac{1}{\sqrt{1-x}} \times -2\sin(2x) = -2 \times \frac{\sin(2x)}{\sqrt{1-x}}$	$\frac{dy}{dt} = (x+4)(-2e^{-2x}) + e^{-2x} \times 1$
$dx \cos(2x) \qquad \qquad \cos(2x) \qquad \qquad \cos(2x)$	dx $(x + 1)(2z + 1) + z + 11$
$=-2\tan(2x)$	$\frac{dy}{dx} = e^{-2x}(-2x-8+1)$
	$\frac{dx}{dy}$
	$\frac{dy}{dx} = e^{-2x} (-2x - 7)$
	Increasing function when $e^{-2x}(-2x-7) > 0$
	e^{-2x} is always > 0
	:. Increasing function when $(-2x - 7) > 0$
	$\Rightarrow -2x > 7$
	$\Rightarrow x < -3\frac{1}{2}$
Question 21 E	Question 22 B
$f'(x) = \frac{1}{2}(3x^2 - 4x + 18)^{-\frac{1}{2}} \times (6x - 4)$	$J(1 - 0.02) \approx J(1) - 0.02 f'(1)$
3x - 2	
$=\frac{1}{\sqrt{3x^2-4x+18}}$	

Question 23 C	Question 24 E
The given graph starts with a positive gradient, then	$A = \int_{a}^{b} f(x)dx - \int_{a}^{c} f(x)dx + \int_{a}^{d} f(x)dx$
has a gradient of zero, then a negative gradient	a b c
then	$A = \int_{a}^{b} f(x)dx + \int_{a}^{b} f(x)dx + \int_{a}^{b} f(x)dx$
a zero gradient, and then a positive gradient.	$ \begin{array}{c} 1 \\ a \\ c \\ c$
no the gradient graphs drawn for the solutions, a	∴E
gradient lies above the X axis and a negative	
gradient lies below the X axis and a gradient of	
zero lies on the X axis.	
So the solution will start above the X axis, then	
go below the λ axis and then above the λ axis.	
Question 25 A	Question 26 E
$\sin(1-x) = 0$	$A = \int_{1}^{2} \frac{kx}{dx} dx$
$1-x=-\pi,0,\pi,\ldots$	$I = \int_{0}^{1} 1 + x^{2} dx$
$x = \pi + 1, 1, 1 - \pi, \ldots$	$A = \int_{-\infty}^{2} x dx$
But $0 < a < \frac{\pi}{2}$	$A = \kappa \int_{0}^{\infty} \frac{1}{1 + x^2} dx$
2	$k^2 \cdot 2r$
$\therefore a = 1$	$A = \frac{\pi}{2} \int \frac{2\pi}{1+x^2} dx$
$4 - \int \sin(1-r) dr$	k
$M = \int_{0}^{\infty} \sin(1 - x) dx$	$A = \frac{\pi}{2} \log_e (1 + x^2)]_0^2$
$= -\cos(1-x) \times -1$	
$=\cos(1-x)]_{0}^{1}$	$A = \frac{1}{2} [\log_{e}(5) - \log_{e}(1)]$
$= \cos(0) - \cos(1)$	$A = \frac{k}{-\log_2(5)}$
$= 1 - \cos(1)$	2

Question 27 A

$$\int_{0}^{3} [f(x) - 2] dx + \int_{3}^{6} [f(x) + 1] dx = \int_{0}^{3} f(x) dx - \int_{0}^{3} 2 dx + \int_{3}^{6} f(x) dx + \int_{3}^{6} 1 dx$$

=
$$\int_{0}^{6} f(x) dx - \int_{0}^{3} 2 dx + \int_{3}^{6} 1 dx$$

=
$$5 - [2x]_{0}^{3} + [x]_{3}^{6}$$

=
$$5 - 6 + 6 - 3 = 2$$

Question 1	Question 2
a.	$\Pr(X < 50) = 0.35$
$2\sqrt{\frac{1}{2}}$	$\Pr(Z < -a) = 0.35$
(x-3)x+1	$\Pr(Z > a) = 0.35$
$\frac{x-3}{x-3}$	$\Pr(Z < a) = 1 - 0.35 = 0.65$
4	a = 0.385
1	-a = -0.385 (1 mark)
$f(x) = 1 + \frac{4}{x-3}$	$-0.385 - \frac{50 - 60}{2}$
A = 1, B = 4, C = -3 (1 mark)	σ
b.	$-0.385\sigma = -10$
$1 + \frac{4}{x - 3} = 0 \qquad \qquad$	$\sigma = 26$ to the nearest whole number (1 mark)
$\frac{4}{1} = -1$	
x-3	
-x+3=4	
-x = 1 $x = 3$	
x = -1 (1 mark)	
$\{x : x < -1\} \cup \{x : x > 3\}$ (1 mark)	
Question 3	Question 3
a.	b.
Let $e^x = A$	$\log_{10}(v^{2}) = \log_{10}\frac{2x-8}{2}$
$A^2 + 4A - 12 = 0$	$3e^{\circ}$
(A+6)(A-2) = 0	$(y^2) = \frac{2x-8}{6}$ (1 mark)
A = -6, or $A = 2$ (1 mark)	b
$\Rightarrow e^x = -6$, or $e^x = 2$	$(y^2) = \frac{x^2 + y^2}{3}$
But $e^x > 0$	$y = \pm \sqrt{\frac{x-4}{x-4}}$
$\therefore e^{x} = 2 \Longrightarrow x = \log_{e}(2) \qquad (1 \text{ mark})$	V 3
	$y = \sqrt{\frac{x-4}{3}} \qquad (1 \text{ mark})$
	с.
	<i>x</i> – 4 >0
	$\therefore x > 4 \qquad (1 \text{ mark})$

Page 6

2005 Mathematical Methods Trial Examination 1 Suggested Solutions Part II

Question 4	Question 5 (2.8)
	a. (-,)
a. $y = mx + c$	(1 mark) \boldsymbol{v}
$m = \frac{dy}{dx} = 2x - 5$	
When $x = 3, m = 1$ (1 mark)	
y = x + c	$ - 0 \rangle / (4,0) $
When $x = 3, y = 0$	
$\therefore 0 = 3 + c$	
$\Rightarrow c = -3$	
$\therefore y = x - 3 \qquad (1 \text{ mark})$	(2,-4) h
b.	g(x) = ax(x-4)
v = -r + c	When $x = 2, g(x) = 8$
y = -3 + c	$8 = a \times 2 \times -2$
3 = c	-4a = 8
v = -x + 3 (1 mark)	a = -2
	$g(x) = -2x^2 + 8x$ (1 mark)
с.	с.
At point of interscn. $x^2 - 5x + 6 = -x + 3$	Translate $g(x)$ 2 units to left parallel to X axis and 8 units down parallel to Y axis (2 marks)
$x^2 - 4x + 3 = 0$	Reflect in X axis (1 mark)
(x-3)(x-1) = 0	Dilate by a factor of $\frac{1}{2}$ in the Y direction (1 mark)
x = 3, or $x = 1$	2
A is point where $x = 1$	
When $x = 1, y = 2$	
(1,2) (1 mark)	

Question 6

- 1 mark for shape, with turning point at (1,0)
- 1 mark for (0.0)
- 1 mark for point of inflexion at (2,0)

END OF SUGGESTED SOLUTIONS 2005 Mathematical Methods Trial Examination 1

KILBAHA MULTIMEDIA PUBLISHING	TEL: (03) 9817 5374
PO BOX 2227	FAX: (03) 9817 4334
KEW VIC 3101	chemas@chemas.com
AUSTRALIA	www.chemas.com