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Question 1   C 

Pr(X = 1) + Pr(X = 4) = 0.1 + 0.3 = 0.4   
Question 2   D 

2Pr (X >a) = 2[1− Pr (X <a) ] = 2 − 2 Pr (X <a) 
Question 3   B 

E(X) = n
D

N
= 6 ×

4

12
= 2  

 

Question 4   A 

Pr = BBBGG =
1

2
×
1

2
×
1

2
×
1

2
×
1

2
=
1

32
 

 

Question 5   A 

Pr(YY ) + Pr(RY ) =
4

10
×
3

9
+
6

10
×
4

9
=
2

5
 

 

 

 

Question 6   C 

 

2 cos(
x

2
) =1

cos(
x

2
) =
1

2

x

2
=
π
3

x =
2π

3

 

2 cos(
x

2
) = 3

cos(
x

2
) =

3

2

x

2
=
π
6

x =
π
3

 

{x :
π
3
≤ x ≤

2π
3
}  

Question 7   E 

Amplitude = 2 

Translated 1 unit up∴not A or B 

Period = 
2π
n
=
π
3
⇒ n = 6∴not C 

When θ = 0, graph is a maximum ∴a cos graph 
∴E 

Question 8   D 

2 − 2 cos2θ = 3cosθ

2 cos
2θ + 3cosθ − 2 = 0

2 cosθ −1( ) cosθ + 2( )= 0

cosθ =
1

2
 or cosθ = −2

−1≤ cosθ ≤1

∴cosθ =
1

2

⇒ θ =
π

3
,
5π

3

Sum of solutions =  
π
3
+
5π
3
= 2π

 

Question 9   E 

 

g(x) = f (x −1) = (x −1)3 − 2(x −1)2 − 8(x −1) − 5

= x3 − 3x2 + 3x −1 − 2(x2 − 2x +1) − 8x + 8 − 5

= x3 − 5x2 − x
 

Question 10   A 

y = a(x +1)2 + 4

y = a(x − b)2 + c

∴b = −1,c = 4

When x = 0, y = 2

⇒ 2 = a(0 +1)2 + 4

⇒ a + 4 = 2⇒ a = −2

 

 

π
3

 

2π
3
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Question 11   C 

g(x) = −(ex − 2) = −ex + 2 = − f (x) + 2  
 

 

Question 12   B 

x = (y −1)2 − 5

x + 5 = (y −1)2

y −1 = ± (x + 5)

y = 1± (x + 5)   y ≥ 1, x ≥ −5

∴ y = 1+ (x + 5) 

 

 

Question 13 E 

To have an inverse, the graph must be one – to − 
one. 

The only graph here, taking the domain of that 

graph into consideration, that is not one − to − 
one is E 

 

 

Question 14   D 

loga (xy) = log a(x) + loga (y)

loga (xy
4 ) = log a (x) + loga (y

4 )

loga (xy
4 ) = log a (x) + 4 loga (y) = p(1)

loga (
y
3

x
) = loga (y

3
) − log a (x)

loga (
y3

x
) = 3log a (y) − loga (x) = q(2)

(1) + (2)→ 7 loga(y) = p + q

→ loga (y) =
1

7
( p+ q)

4× (2) − 3 × (1)→ −7 loga (x) = 4q − 3p

loga (x) =
1

7
(3p − 4q)

loga (x) + log a(y) =
1

7
(3p − 4q + p + q)

loga (x) + log a(y) =
4 p − 3q

7

 

 

Question 15   B 

x = 8t

log2 x = log2 8
t

log2 x = t log2 2
3

log2 x = 3t log2 2

log2 x = 3t

 

Question 16   D 

When x = −
1

2
, y = 0   When x = 1,y = 0

f (x) = (2x + 1)(x −1)∴  can be written as the product of two real linear factors.

Completing the square gives

f (x) = 2(x 2 −
1

2
x −

1

2
) = 2(x2 −

1

2
x +

1

16
−
1

2
−
1

16
)

f (x) = 2[(x −
1

4
)
2 −

9

16
] = 2(x −

1

4
)
2 −

9

8

Between x = −
1

2
 and x =1,  where this graph cuts the X  axis, the graph is negative.

∴D is not true.

 

 

 

y 
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Question 17   E 
By dividing x +1 into 2x + 5 we get 

2x + 5

x +1
= 2 +

3

x + 1

This gives the graph of 
3

x
 translated 1 unit to the left

and 2 units up.  This means a vertical asymptote

with equation x = −1 and a horizontal asymptote 

with equation y = 2

 

 

Question 18   B 

dy

dx
= −2e5− 2x = −8

e
5− 2x = 4

5 − 2x = log e 4

2x = 5 − log e 4

x =
5

2
−
1

2
log e 4

x =
5

2
− loge 4

1

2

x =
5

2
− loge 2

 

 

Question 19   A 

dy

dx
=

1

cos(2x)
× −2sin(2x) = −2 ×

sin(2x)

cos(2x)

= −2tan(2x)

 

 

 

Question 20   C 

dy

dx
= (x + 4)(−2e−2 x) + e−2x ×1

dy

dx
= e−2x (−2x − 8 +1)

dy

dx
= e−2x (−2x − 7)

Increasing function when e−2x (−2x − 7) > 0

e−2x  is always > 0

∴Increasing function when (−2x − 7) > 0

⇒ −2x > 7

⇒ x < −3
1

2

 

 

Question 21   E 

f  ' (x)=
1

2
(3x2 − 4 x +18)

−
1

2 × (6x − 4)

           =
3x − 2

3x 2 − 4x + 18

 

 

Question 22   B 

f (1− 0.02) ≈ f (1) − 0.02 ′f (1)  
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Question 23   C 

The given graph starts with a positive gradient, 

then 

has a gradient of zero, then a negative gradient 

then 

a zero gradient, and then a positive gradient. 

In the gradient graphs drawn for the solutions, a 

positive  

gradient lies above the X axis and a negative 

gradient lies below the X axis and a gradient of 

zero lies on the X axis. 

So the solution will start above the X axis, then 

go below the X axis and then above the X axis.  

∴C 
 

Question 24   E 

A = f (x)dx
a

b

∫ − f (x)dx
b

c

∫ + f (x)dx
c

d

∫

A = f (x)dx
a

b

∫ + f (x)dx
c

b

∫ + f (x)dx
c

d

∫
∴E

 

 

Question 25   A 
sin(1− x) = 0

1 − x = −π ,0,π , . . .

x = π +1,1,1 − π, . . .

But 0 < a <
π
2

∴a = 1

A = sin(1 − x)dx
0

1

∫

    = −cos(1 − x) × −1]0
1

    = cos(1− x)]
0

1

    = cos(0) − cos(1)

    = 1− cos(1)

  

 

Question 26   E 

A =
kx

1 + x2
0

2

∫ dx

A = k
x

1+ x2
0

2

∫ dx

A =
k

2

2x

1+ x20

2

∫ dx

A =
k

2
log e(1+ x

2 )]0
2

A =
k

2
[log e(5) − log e(1)]

A =
k

2
log e(5)

 

 

Question 27   A 

 

[ f (x) − 2]dx
0

3

∫ + [ f (x) +1]dx
3

6

∫ = f (x)dx
0

3

∫ − 2dx
0

3

∫ + f (x)dx
3

6

∫ + 1dx
3

6

∫

= f (x)dx
0

6

∫ − 2dx
0

3

∫ + 1dx
3

6

∫

= 5 − 2x[ ]0
3
+ x[ ]3

6

= 5 − 6 + 6 − 3 = 2
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Question 1  

a.   

x − 3 x +1

x − 3

      4

1

 

f (x) = 1+
4

x − 3
A = 1,B = 4,C = −3         (1 mark)

 

b. 

1 +
4

x − 3
= 0

4

x − 3
= −1

−x + 3 = 4

−x = 1

x = −1                               (1 mark)

{x : x < −1}∪ {x : x > 3}    (1 mark)

 

 

Question 2    

Pr(X < 50) = 0.35

Pr(Z < −a) = 0.35

Pr(Z > a) = 0.35

Pr(Z < a) = 1− 0.35 = 0.65

a = 0.385

−a = −0.385                                     (1 mark)

−0.385 =
50 − 60

σ
−0.385σ = −10

σ = 26 to the nearest whole number    (1 mark)

 

 

Question 3  

a. 

Let ex = A

A
2 + 4A −12 = 0

(A+ 6)(A− 2) = 0

A = −6,  or A = 2                 (1 mark)

⇒ ex = −6, or ex = 2

But e
x > 0

∴ex = 2⇒ x = log e(2)       (1 mark)

 

 

 

 

 

 

 

 

 

 

 

 

Question 3 

b.    

loge(y
2 )= loge

2x − 8

6

(y2 )=
2x − 8

6
          (1 mark)

(y
2
)=
x − 4

3

y = ±
x − 4

3

But y > 0

y =
x − 4

3
             (1 mark)

 

 

c. 

 

x − 4 >0 
∴x > 4             (1 mark) 

 

−1 

x = 3 

y = 1 

x  

y  
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Question 4   

 

a.   
y = mx + c

m =
dy

dx
= 2x − 5

When x = 3,m = 1         (1 mark)

y = x + c

When x = 3,y = 0

∴0 = 3+ c

⇒ c = −3

∴ y = x − 3                     (1 mark)

 

 

b. 

 
y = −x + c

0 = −3+ c

3= c

y = −x + 3           (1 mark)

 

 

 

c. 

At point of interscn. x2 − 5x + 6 = −x + 3

x
2 − 4 x + 3 = 0

(x − 3)(x − 1) = 0

x = 3,  or x = 1

A is point where x = 1

When x =1, y = 2

(1,2)                         (1 mark)

 

 

 

 

 

 

 

 

 

 

Question 5  

a. 

 

(1 mark) 

 

 

 

 

 

 

 

 

 

 

b. 
g(x) = ax(x − 4)

When x = 2, g(x) = 8

8 = a × 2 × −2

−4a = 8

a = −2

g(x) = −2x2 + 8x           (1 mark)

 

 

c. 

Translate g(x) 2 units to left parallel to X axis 

and 8 units down parallel to Y axis.  (2 marks) 

Reflect in X axis   (1 mark)                                        

Dilate by a factor of 
1

2
 in the Y direction (1 mark) 

 

x 

y 

0 (4,0) 

(2,−4) 

(2,8) 
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Question 6  

 

• 1 mark for shape, with turning point at (1,0) 
• 1 mark for (0.0) 
• 1 mark for point of inflexion at (2,0) 
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