VCE 2005 Mathematical Methods Trial Examination 2

Suggested Solutions

© Kilbaha Multimedia Publishing 2005

Kilbaha Multimedia Publishing ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: 03 9817 5374 Fax: 03 9817 4334 chemas@chemas.com www.chemas.com

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from Copyright Agency Limited. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.
- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute this electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute this printed file to the students at the school for their exclusive use.
- The Word file is for use ONLY within the school
- It may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the file must carry this copyright notice
- Commercial use of this material is expressly prohibited

Question 1 a. b. \mathcal{Y} $f(x) = 2\left[x^2 - 6x + \frac{23}{2}\right]$ $f(x) = 2\left[x^2 - 6x + 9 + \frac{23}{2} - 9\right]$ (1 mark) $f(x) = 2\left[(x-3)^2 + \frac{5}{2} \right]$ f(x) must have one - one correspondence for $f^{-1}(x)$ to exist. $f(x) = 2(x-3)^2 + 5$ *a* = 3 (1 mark) A = 2, B = 3, C = 5(1 mark) d. c. $x = 2(y-3)^2 + 5$ 1 mark for each shape with its end point. $x-5=2(y-3)^2$ $\frac{x-5}{2} = (y-3)^2$ y (3,5)-----(5,3) $y-3=\pm\sqrt{\frac{x-5}{2}}$ $y = 3 \pm \sqrt{\frac{x-5}{2}}$ (1 mark) But $y \ge 3$ $\therefore y = 3 + \sqrt{\frac{x-5}{2}}$ e.(i) f'(x) = 4x - 12: $f^{-1}(x) = 3 + \sqrt{\frac{x-5}{2}}$ $x \ge 5$ (1 mark) When x = 4, f'(x) = 4 (1 mark) Domain $[5,\infty)$ (1 mark)Range $[3,\infty)$ (1 mark)

e.(ii)	f.
$f^{-1}(x) = 4 - 3 + \sqrt{x - 5}$	Let point of intersection be (a,b)
$\int (x) - 4 = 5 + \sqrt{2}$	For $f^{-1}(x)$ when $x = 7, y = 4$
$x-5$ _ 1	\therefore for $f(x)$ when $x = 4, y = 7$
$\sqrt{\frac{1}{2}}^{-1}$	Gradient of $f(x) = 4$
$\frac{x-5}{1}=1$	$\frac{7-b}{-4}$
	$\frac{1}{4-a}$ - 4
x - 5 = 2	$\therefore 7 - b = 16 - 4a$
$x = 7 \qquad (1 \text{ mark})$	4a - b = 9 (1) (1 mark)
$\int f'^{-1}(x) = \frac{1}{2} \left(\frac{x-5}{2} \right)^{-\frac{1}{2}} \times \frac{1}{2} = \frac{1}{4} \left(\frac{x-5}{2} \right)^{-\frac{1}{2}} $ (1 mark)	But gradient of $f^{-1}(x) = \frac{1}{4}$
When $x = 7$,	$\therefore \frac{4-b}{7-a} = \frac{1}{4}$
$f'^{-1}(x) = \frac{1}{2}$ (1 mark)	$\therefore 7 - a = 16 - 4b$
4 (Thurk)	-a+4b=9
	-4a + 16b = 36 (2)
	(1) + (2)
	15b = 45
	<i>b</i> = 3
	Sub $b = 3$ in (1)
	<i>a</i> = 3
	(3,3) (1 mark)
g. All the points will be of the form (a, a)	
so the equation of the line will be $v = r$ (1 mark)	
$= \frac{1}{2} = $	

Question 2

	-
$\frac{a}{100} \times 18,000 = 6,300$	b. $4k^2 + k + 6k^2 + 4k - 14k^2 = 1$ $-4k^2 + 5k - 1 = 0$
(1 mark)	$4k^2 - 5k + 1 = 0$
c. $Pr = 4k^2 + k + 6k^2 = 10k^2 + k = \frac{7}{4}$ (1 mark)	(4k-1)(k-1) = 0 (1 mark)
8 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$k = \frac{1}{4}$ or 1
	But 0 < <i>k</i> < 1
	$\therefore k = \frac{1}{4} $ (1 mark)
d.(i) $Pr(X = 1) = {\binom{10}{1}} {\left(\frac{3}{10}\right)^{1}} {\left(\frac{7}{10}\right)^{9}} = 0.121$ (1 mark)	d(ii). Pr(X ≥ 2) = 1 - [Pr(X = 0) + Pr(X = 1)] (1 mark) = 1 - $\left[\binom{10}{0} \left(\frac{3}{10} \right)^0 \left(\frac{7}{10} \right)^{10} + \binom{10}{1} \left(\frac{3}{10} \right)^1 \left(\frac{7}{10} \right)^9 \right]$ = 0.851 to 3 dec. places. (1 mark)

Question 2(continued)

Page 5

Question 3

a. Maximum $h = 10 + 3 = 13$ hours (1 mark)	b. Minimum $h = 10 - 3 = 7$ hours (1 mark)
c. Period = $\frac{2\pi}{n}$ where $n = \frac{2\pi}{365}$ Period = $2\pi \div \frac{2\pi}{365} = 365$ days (1 mark) e. $10 + 3\cos\frac{2\pi(t - 100.5)}{365} = 12$ $\cos\frac{2\pi(t - 100.5)}{365} = \frac{2}{3}$ $\frac{2\pi(t - 100.5)}{365} = -0.8411, 0.8411, 5.442$ (1 mark) $2\pi(t - 100.5) = -306.99, 307.0015, 1986.37$ t = 51.64, 149.36 t = 52, 149 (1 mark) 52nd day of the year is February 21 149th day of the year is May 29 (1 mark)	d. Minimum occurs when $cos \frac{2\pi(t-100.5)}{365} = -1 \qquad (1 \text{ mark})$ $\frac{2\pi(t-100.5)}{365} = -\pi, \pi, 3\pi, 5\pi \qquad (1 \text{ mark})$ $\frac{2(t-100.5)}{365} = -1, 1, 3, 5$ $2(t-100.5) = -365, 365$ $t-100.5 = -182.5, 182.5$ $t = 283 t > 0$ Minimum daylight hours occur on the 283rd day of the year. (1 mark)
(* mmn)	

Page 6

Question 3 (continued)

Question 4

a. $f(0) = 0 \times 1 = 1 = (1 \text{ morb})$	b. $f'(x) = xke^{kx} + e^{kx}$ (1 mark)
$f(0) = 0 \times 1 = 1 = -1$ (1 IIIalK)	
c. Turning Point occurs when $f'(x) = 0$ $e^{kx}(kx+1) = 0$ (1 mark) $e^{kx} \neq 0$ $\therefore kx + 1 = 0$ kx = -1 $x = -\frac{1}{k} = -\frac{1}{2}$ $\therefore k = 2$ (1 mark)	d. f(x) (0,-1) (0,-1) (0,-3,0) $(-\frac{1}{2},-\frac{1}{2}e^{-1}-1)$
	Asymptote: $y = 0$ When $x = -\frac{1}{2}$, $y = -\frac{1}{2}e^{-1} - 1$ When $x = 0$, $y = -1$ 1 mark for shape and x , y intercepts 1 mark for equation of asymptote 1 mark for exact value of minimum turning point.

Page 8

Question 4 (continued)

0	f
$\int xe^{5x}$	$A = \int_{-\infty}^{0.43} f(x) dx + \int_{-\infty}^{1} f(x) dx$
$f(x) = xe^{kx} - 1$	
$f'(x) = xke^{kx} + e^{kx}$	$\int f(x)dx = \int (xe^{2x} - 1)dx$
$\int (xke^{kx} + e^{kx})dx = xe^{kx} - 1 \qquad (1 \text{ mark})$ If $k = 5$	$A = \left \frac{1}{4} (2x-1)e^{2x} - x \right _{0}^{0.43} \left + \frac{1}{4} (2x-1)e^{2x} - x \right _{0.43}^{0}$
$\int 5xe^{5x}dx + \int e^{5x}dx = xe^{5x} - 1$	(1 mark)
J J - 1	$A = -0.2627 + 1.36 \qquad (1 \text{ mark})$
$5\int xe^{5x}dx + \frac{1}{5}e^{5x} = xe^{5x} - 1$	A = 0.2627 + 1.36
f su su 1 su	A = 1.62 to 2 decimal places.
$5\int xe^{3x}dx = xe^{3x} - 1 - \frac{1}{5}e^{3x}$	(1 mark)
$\int xe^{5x}dx = \frac{1}{5}(xe^{5x} - 1 - \frac{1}{5}e^{5x}) + c (1 \text{ mark})$	
where c is a constant.	
So $\int xe^{5x} dx = \frac{1}{5} \left(xe^{5x} - \frac{1}{5}e^{5x} \right) + c_1$	
where c_1 is a constant.	
$\int xe^{5x} dx = \frac{1}{25} (5x-1)e^{5x} + c_1$	
g. $g(x)$ and $g^{-1}(x)$ intersect on the line $y = x$	
$\therefore x = xe^{5x}$	
$x - xe^{5x} = 0 \qquad (1 \text{ mark})$	
$x(1-e^{5x})=0$	
$\Rightarrow x = 0 \text{ or } e^{5x} = 1$	
$\Rightarrow x = 0 \text{ or } 5x = 0$	
$\Rightarrow x = 0$	
When $x = 0, y = 0$	
\therefore point is (0, 0) (1 mark)	

END OF SUGGESTED SOLUTIONS 2005 Mathematical Methods Trial Examination 2

KILBAHA MULTIMEDIA PUBLISHING	TEL: (03) 9817 5374
PO BOX 2227	FAX: (03) 9817 4334
KEW VIC 3101	chemas@chemas.com
AUSTRALIA	www.chemas.com