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Question 1 

a.   

f (x) = 2 x2 − 6x +
23

2







f (x) = 2 x2 − 6x + 9 +
23

2
− 9




   (1 mark)

f (x) = 2 (x − 3)2 +
5

2







f (x) = 2(x − 3)2 + 5

A = 2,B = 3,C = 5                      (1 mark)

  

                                                                         

 

b. 

 

 

 

 

 

 
f (x) must have one - one correspondence for

 f
−1
(x) to exist. 

 a = 3                                (1 mark)   

 

c. 

x = 2(y − 3)2 + 5

x − 5 = 2(y− 3)2

x − 5

2
= (y − 3)2

y − 3 = ±
x − 5
2

y = 3±   
x − 5
2

                  (1 mark)

But y ≥ 3

∴ y = 3 +
x − 5
2
 

∴ f −1(x) = 3 +
x − 5
2
      x ≥ 5   (1 mark)

Domain  [5,∞)                             (1 mark)

Range    [3,∞)                             (1 mark)

 

 

 

d. 

  

   1 mark for each shape with its end point. 

 

e.(i) 

 
′f (x) = 4x − 12

When x = 4, ′f (x) = 4     (1 mark)
 

 

(3,5) 

x 

y 

(3,5) 

x 

y 

(5,3) 
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e.(ii) 

f −1(x) = 4 = 3 +
x − 5

2

x − 5
2

= 1

x − 5

2
= 1

x − 5 = 2

x = 7                       (1 mark)

′f −1(x) =
1

2

x − 5
2







− 1
2

×
1

2
=
1

4

x − 5
2







− 1
2

 (1 mark)

When x = 7,

′f −1(x) =
1

4
                            (1 mark)

                       

 

 

 

f. 
Let point of intersection be (a,b) 

For f
−1
(x) when x = 7, y = 4

∴  for f (x)when x = 4, y = 7

Gradient of f (x) = 4

∴
7 − b
4 − a

 = 4

∴7 - b =16 - 4a

4a - b = 9 (1)                    (1 mark)

But  gradient of f −1(x) =
1

4

∴
4 − b
7 − a

 =
1

4

∴7 - a = 16 - 4b

−a + 4b = 9 

−4a +16b = 36 (2)

(1) + (2)

15b = 45

b = 3

Sub b = 3 in (1)

a = 3

(3,3)                  (1 mark)

 

        

 

g. 
All the points will be of the form (a,a),

so the equation of the line will be y = x   (1 mark)
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Question 2 

 

 

a.   

35

100
×18,000 = 6,300  

 

                                                             (1 mark) 

b. 

4k 2 + k + 6k2 + 4k −14k2 =1

−4k2 + 5k − 1 = 0

4k
2 − 5k +1 = 0

(4k −1)(k −1) = 0   (1 mark)

k =
1

4
 or 1

But 0 < k <1

∴ k =
1

4
                     (1 mark)

 

 

 

c. Pr = 4k2 + k + 6k2 = 10k 2 + k =
7

8
   (1 mark)  

d.(i) 

Pr(X = 1) =
10

 1







3

10







1
7

10







9

= 0.121

                                                          (1 mark)

 

 

 

d(ii). 

Pr(X ≥ 2) =1− [Pr(X = 0) + Pr(X = 1)] (1 mark)

= 1 −
10

 0







3

10






0
7

10






10

+
10

 1







3

10






1
7

10






9











= 0.851 to 3 dec. places. (1 mark)
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Question 2(continued)  

  

e(i).  
 

 

 

 

 

 

 

 

 

 

 

 

Pr(X > 50) = 0.9332

Pr Z > −a( )= 0.9332
Pr Z < a( )= 0.9332
a = 1.5

−a = −1.5          (1 mark)

Z =
x − µ
σ

−1.5 =
50 − µ
10

µ = 65               (1 mark)

 

 

e(ii). 

 
Pr(X > 82 / X > 50)

=
Pr(X > 82 ∩ X > 50)

Pr(X > 50)

=
Pr(X > 82)
0.9332

            (1 mark)

Z =
x − µ
σ

=
82 − 65
10

= 1.7

Pr(X > 82 / X > 50) =
Pr(Z >1.7)
0.9332

=
1− Pr(Z <1.7)

0.9332
=
1− 0.9554

0.9332
= 0.05  (1 mark)

 

 

 

 

 

 

 

 

 

 

 

 

 

f. 

Pr(X = 4) =

20

 7







10

 4








30

11








        (1 mark)

= 0.298                                  (1 mark)

 

 

 

 

10=σ

µ  
 

50 

−a a 
0.9332 
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Question 3 

 

a.  

Maximum h = 10 + 3 = 13 hours      (1 mark)  
 

b. 

Minimum h = 10 − 3 = 7 hours       (1 mark)  

c. 

Period =  
2π
n
where n =

2π
365

Period =  2π ÷
2π
365

= 365 days    (1 mark)
 

 

              

 

 

d. 
Minimum occurs when

cos
2π (t −100.5)

365
= −1               (1 mark)

2π (t −100.5)
365

= −π ,π, 3π ,5π....   (1 mark)

2(t −100.5)

365
= −1,1, 3,5....

2(t −100.5) = −365, 365....

t −100.5 = −182.5,182.5...

t = 283   t > 0

Minimum daylight hours occur on the 

283rd day of the year.                  (1 mark)

 

 

 

 

e. 

10 + 3cos
2π (t −100.5)

365
=12               

cos
2π (t −100.5)

365
=
2

3
  

2π (t −100.5)
365

= −0.8411, 0.8411, 5.442    (1 mark)

2π (t −100.5) = −306.99, 307.0015, 1986.37

t = 51.64, 149.36

t = 52, 149                                              (1 mark)

52nd day of the year is February 21

149th day of the year is May 29                (1 mark)
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Question 3 (continued) 

  

f. 

 

 

 

 

 

 

 

 

 

 

When t = 0,h = 10 + 3cos
2π (−100.5)

365






= 9.5  

                                                             (1 mark) 

 

 

 

g. 

There are 12 hours of sunlight on day 52 and 

day 149. 

Number of days from day 52 to day 149 = 97 

More than 12 hours of sunlight =96 days 

because day 52 and day 149 should not be 

included.      

 

                                                               (1 mark) 

h. 

dh

dt
= −3sin

2π (t −100.5)
365






×
2π
365

    (1 mark)

When t = 30,

dh

dt
= −3sin

2π (−70.5)
365






×
2π
365

dh

dt
= 0.048 hours / day =  2.89 min / day  

dh

dt
= 3min/ day                               (1 mark)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 

(0,9.5) 

283 365 

h(t) hours 

t days 

7 
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Question 4 

a. 

 

f (0) = 0 ×1 −1 = −1      (1 mark)  
 

b. 

′f (x) = xkekx + ekx         (1 mark)  

c. 
Turning Point occurs when ′f (x) = 0

ekx(kx +1) = 0            (1 mark)

e
kx ≠ 0

∴ kx +1= 0

kx = −1

x = −
1

k
= −

1

2

∴ k = 2                      (1 mark)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asymptote: y = 0 

When x = −
1

2
, y = −

1

2
e−1 −1

When x = 0, y = −1
 

 

1 mark for shape and x, y intercepts 

1 mark for equation of asymptote 

1 mark for exact value of minimum turning 

point. 

 

(−
1

2
, −
1

2
e
−1 −1)

 

(0.43,0) 
(0,−1) x 

f(x) 
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Question 4 (continued) 

 

e. 

xe
5 x∫

f (x) = xekx −1

′f (x) = xkekx + ekx

(∫ xkekx + ekx )dx = xekx −1             (1 mark)
If k = 5

5xe∫
5x

dx + e
5 x∫ dx = xe5x −1

5 xe
5x
dx +

1

5
e
5x =∫ xe

5 x − 1

5 xe
5x
dx =∫ xe

5x −1 −
1

5
e
5x

xe5 xdx =∫
1

5
(xe5x −1 −

1

5
e5x ) + c   (1 mark)

where c is a constant.

So xe∫
5x

dx =
1

5
xe5x −

1

5
e5 x






+ c1

where c1 is a constant.

xe∫
5 x

dx =
1

25
5x −1( )e5x + c1

 

f. 

A = f (x)dx
0

0.43

∫ + f (x)dx
0.43

1

∫

f (x)dx = (xe
2x −1)dx∫∫

A =
1

4
(2x −1)e2x − x

0

0.43

+
1

4
(2x −1)e2x − x

0.43

0

                                                                     (1 mark)

A = −0.2627 +1.36                  (1 mark)

A = 0.2627 + 1.36

A = 1.62 to 2 decimal places.   

                                                (1 mark)

 

g. 

g(x) and g−1(x) intersect on the line y = x

∴ x = xe5 x

x − xe5 x = 0                      (1 mark)

x(1− e5x ) = 0

⇒ x = 0 or e5 x = 1

⇒ x = 0 or 5x = 0

⇒ x = 0

When x = 0, y = 0

∴  point is (0, 0)                  (1 mark)
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