2005 Mathematical Methods Written Examination 1

Suggested Answers & Solutions

Part 1 (Multiple-choice) Answers

1. D	2 . B	3 . D	4 . E	5. D
6. D	7 . E	8 . D	9 . E	10. A
11. D	12. A	13. A	14. C	15 . E
16. A	17 . B	18 . C	19 . C	20 . C
21 . D	22 . C	23 . D	24 . B	25 . E
26 . B	27 . A			

Part 1 (Multiple-choice) Solutions

Question 1 [D]

At least two hours means 2 or 3 or 4 hours. The sum of the proportions is $7 \quad 10 \quad 4 \quad 21$

 $\frac{7}{30} + \frac{10}{30} + \frac{4}{30} = \frac{21}{30}$

Question 2 [B]

$$Mean = \sum (x \times proportion) = 0 \times \frac{3}{30} + 1 \times \frac{6}{30} + ...4 \times \frac{4}{30} = \frac{0 + 6 + 14 + 30 + 16}{30} = \frac{66}{30}$$

Question 3 [D]

InvNorm (0.95, 0, 1) = 1.645 from calculator.

Question 4 [E]

Hypergeometric distribution. The probability of at least one box with a prize is the same as taking the probability of no prizes from 1.

$$= 1 - \frac{{}^{4}C_{2} \times {}^{2}C_{0}}{{}^{6}C_{2}}$$
$$= 9/15$$

Question 5 [D]

Binomial: Bi(n, 0.3) Pr(John wins no games) = 0.7^n Therefore $0.7^n = 0.0576$ $n \log(0.7) = \log(0.0576)$ n = 8.0023Answer: 8 games

Question 6 [D]

Using Factor 7 (or 9) the factorised form is x(x-2)((x+2)(x+3)). So (x-3) is not a factor. Answer: (x-3)

Question 7 [E]

The turning point of this quadratic is at (3, 1). The function needs to be one-toone for the inverse to exist. Since the domain extended to $+\infty$, it starts from the *x* value of the turning point. The domain is [3, ∞) or $a \ge 3$.

Question 8 [D]

3 $e^{2x} = 4$ $e^{2x} = 4/3$ $\ln(e^{2x}) = \ln(4/3)$ $2x = \ln(4/3)$ and so $x = \frac{1}{2} \ln(4/3)$ x = 0.144 to 3 decimal places.

Question 9 [E]

 $2 \log_{10} (x) + 3 = 5 \log_{10} (x)$ Therefore 3 = 5 log₁₀(x) - 2 log₁₀(x) 3 = 3 log₁₀(x) 1 = log₁₀(x) and so x = 10.

Question 10 [A]

The amplitude is 2, eliminating alternatives C and D.

Period: $\frac{2\pi}{n} = 1 \div \frac{5}{2} = \frac{2}{5}$ and so $n = 5\pi$. This eliminates E. When t = 0 the value of y = 3. Out of the two alternatives remaining, A fulfils this requirement.

Question 11 [D]

The period of the graph $y = \tan(kx)$ is

 $\frac{\pi}{k}$ and so the period here is $\pi \div \frac{1}{4}$ or

4π.

Question 12 [A]

Using the Graphics Calculator with $y_1 = \cos 2x$ and $y_2 = \sqrt{3} \sin 2x$, only one point of intersection is found within the domain.

Dividing this x value shown on the screen by π gives 0.0833333, (the decimal equivalent for $\frac{1}{12}$) and so the

exact answer is $\frac{\pi}{12}$.

 $\cos(2x) = \sqrt{3}\sin(2x)$

$$Tan(2x) = \frac{1}{\sqrt{3}}$$

$$2x = \frac{\pi}{6}$$
$$x = \frac{\pi}{12}$$

Question 13 [A]

If $a\sin(x) + c < 0$ then c < -a as the maximum value of $\sin(x)$ is 1.

Question 14 [C]

The x and y values interchange for the inverse function. Because the original function had a horizontal asymptote with equation y = 1, this will become a vertical asymptote with equation x = 1 for the inverse. Only alternatives C and E display this feature. Also, a function and its inverse are mirror images in the line y = x. Only C displays this.

Question 15 [E]

A translation of -2 parallel to the *x* axis of $y = x^2$ results in a graph with equation $y = (x + 2)^2$. This new graph is then dilated by a factor of $\frac{1}{2}$ from the *y* axis. This means that the *x* intercept of (-2, 0) is now positioned at (-1, 0), i.e. half the distance from the *y* axis. E is the only alternative to do this. Answer: $y = (2x + 2)^2$.

Question 16 [A]

A factor of $(x - 1)^2$ is required because the graph touches the *x* axis at x = 1. This eliminates B and C. It also requires factors of (x - 3) and (x + 2), or the negative of both of these. This eliminates D. If x = 0 the value of *y* is negative. A has this property whereas E does not.

Question 17 [B]

The vertical asymptote has equation x-1 = 0 and so x-1 = x + b. The value of *b* is -1. Only alternatives A and B are possible answers. The graph's horizontal asymptote has equation y = 2. But y = c is the horizontal asymptote in the given equation. Hence c = 2. B satisfies these two requirements.

Question 18 [C]

 $y = \frac{x-2}{x+3} = 1 - \frac{5}{x+3}$ So as $x \to \pm \infty$, $\frac{5}{x+3} \to 0$, so $y \to 1$ So asymptotes occur at y = 1 and x = -3.

Question 19 [C]

The gradient of f(x) should have the following features: It

- is always positive
- approaches zero as $x \to \infty$
- is large positive as $x \rightarrow 0$. Only C has these properties.

Question 20 [C]

Average rate of change = $\frac{f(1) - f(0)}{1 - 0}$. $f(1) = 1^2 + e^1$ and $f(0) = 0^2 + e^0 = 1$ Average rate = $\frac{1 + e^{-1}}{1} = e$.

Question 21 [D]

Using Product Rule: $\frac{d}{dp}(10p(1-p)^9)$ = $(1-p)^9 \frac{d}{dp}(10p) + 10p \frac{d}{dp}(1-p)^9$ = $10(1-p)^9 + 10p (9)(-1)(1-p)^8$ = $10(1-p)^8 [1-p-9p]$ = $10(1-p)^8 (1-10p)$

Question 22 [C]

$$\frac{d}{dx}f(e^{2x}) = \frac{d}{du}(f(u)) \times \frac{du}{dx}$$

where $u = e^{2x}$
 $= 2e^{2x}f'(u)$
 $= 2e^{2x}f'(e^{2x})$

Question 23 [D]

 $y = 2x^4 - 4x^3$ and so $\frac{dy}{dx} = 8x^3 - 12x^2$. At x = 2, the values of y and $\frac{dy}{dx}$ are 0 and 16 respectively. The equation of the tangent is y - 0 = 16 (x - 2). This is alternative D.

Question 24 [B]

The gradient of this curve is negative for x > 2 and positive for all other values of x except at x = 0 and x = 2where it is zero. Alternative B shows these features.

Question 25 [E]

If $f(x) = \sin 2x + \cos x$ then the derivative is $2 \cos 2x - \sin x$.

The domain for this window is $[0, 2\pi]$. By observation there are 4 points of intersection.

Question 26 [B]

 $\int (ax+b)^n dx = \frac{1}{a} \times \frac{1}{n+1} (ax+b)^{n+1} + c.$ In this case a = 2, b = -1, n = -3/2and so the integral is:

$$3 \times \frac{1}{2} \times \frac{1}{-1.5+1} (2x-1)^{-1/2} + c$$

= -3(2x-1)^{-1/2} + c

Question 27 [A]

If any of the sets for x included zero then the definite integral could include $_{0}$

 $\int_{0}^{0} f(t) dt$ which is zero and so G(x)

would not be positive. This eliminates C and D. Alternative E is readily discarded because if x = a/2 the area is clearly positive.

Alternative B has certainly got a positive value for G(x) but the word *only* prevents it from being a correct answer.

Alternative A is correct. If x < 0 then

 $\int_{0} f(t) dt$ will be the negative of a

negative number, i.e. positive. If x > 0 then the integral is clearly positive. Alternative A is correct.

PART II

Question 1

Normalcdf ($-\infty$, 46, 41, 3) = 0.9522. Answer: 0.952 to three decimal places.

Question 2

The display from a graphics calculator is shown. The x-values of 0,1,2,3,4 need to be placed horizontally and y values of 0.1, 0.2, 0.3, 0.4, 0.5 vertically.

Do NOT join the points.

Question 3

The vertical asymptotes occur at $x = \pi$ and $x = -\pi$. The intercepts are $(-\pi/2,0)$ and (0,1).

Question 4

Question 5

a.

		1	1	1			1
		1					
	h			4	 4	 +	h
0							
8							
-						<u> </u>	
	1	1					
							i
6	~						
· /	1						
	1	1				0	1
K					 	 	
4							
		1				1	
	F				 	 	F
12							
4							
F					 	 	
	1	1				0	1
		i				() () () () () () () () () () () () () (1
		13		1.1	12	1.4	

Select a point other than (0,5) to indicate scale along the *x* axis. (1, 6.90)would suffice.

Horizontal asymptote y = 8.

Do NOT sketch anything for x < 0. **b.**

$$x = 8 - 3 e^{-y}$$

$$3 e^{-y} = 8 - x$$

$$e^{-y} = \frac{8 - x}{3}$$

$$-y = \log_{e}(\frac{8 - x}{3})$$

$$f^{-1}(x) = -\log_{e}(\frac{8-x}{3})$$
 for $5 \le x < 8$

Question 6

a. $y = (x+2)(x^2-4x+3)$

b. y = (x+2)(x-1)(x-3) and so the *x* intercepts are 1, 3 and -2.

c.
$$\int_{-2}^{1} (x^3 - 2x^2 - 5x + 6) dx$$

- $\int_{1}^{3} (x^3 - 2x^2 - 5x + 6) dx$

$$= \left[\frac{x^4}{4} - \frac{2x^3}{3} - \frac{5x^2}{2} + 6x\right]_{-2}^{1}$$

$$\cdot \left[\frac{x^4}{4} - \frac{2x^3}{3} - \frac{5x^2}{2} + 6x\right]_{1}^{3}$$

$$=\left(\frac{1}{4} - \frac{2}{3} - \frac{5}{2} + 6\right) - \left(\frac{16}{4} + \frac{16}{3} - \frac{20}{2} - 12\right)$$
$$-\left(\frac{81}{4} - \frac{54}{3} - \frac{45}{2} + 18\right) + \left(\frac{1}{4} - \frac{2}{3} - \frac{5}{2} + 6\right)$$
$$= 21.08$$

Question 7

a. $3^{x} = e^{kx}$ Taking logs to base *e* of both sides: $\log_{e} (3^{x}) = \log_{e} (e^{kx})$ $x \log_{e} 3 = kx \text{ so } k = \log_{e}(3) \text{ for all } x.$ Answer: $k = \log_{e} 3$ b. $\frac{d}{dx}(3^{x}) = \frac{d}{dx}(e^{x \log 3})$ $= \log_{e}(3) \times e^{x \log 3}$ or $\log_{e}(3) \times 3^{x}$