VCAA 2005 Mathematical Methods Written Examination 2

Suggested Answers & Solutions

Question 1

a. i (0, 2]

- ii Interchange t for y and y for t: $t = 2 e^{-y}$ and so $\frac{t}{2} = e^{-y}$ Taking logarithm of both sides (to base e): $\log_e(\frac{t}{2}) = \log_e(e^{-y}) = -y$ Hence $f^{-1}(t) = -\log_e(\frac{t}{2})$ and the domain is (0, 2]b. i Using the Product Rule $g'(t) = 2(t-1)e^{-t} - (t-1)^2e^{-t}$ $= [2t-2-(t^2-2t+1)]e^{-t}$ $= (-t^2+4t-3)e^{-t}$ Answers: b = 4, c = -3
 - ii $g'(t) = -(t-1)(t-3)e^{-t}$ = 0 for stationary values. This occurs at t = 1 and t = 3. It should be noted that e^{-t} is never zero. When t = 1, g(1) = 0 and so one stationary value is (1, 0). When t = 3, $g(3) = (3-1)^2 e^{-3} = 4 e^{-3}$ and so the other stationary value is $(3, 4e^{-3})$. Answers: p = 0, m = 3 and $n = 4e^{-3}$
 - iii $q(t) = 2(t-1)^2 e^{-t} 5$ Stationary points occur when q'(t)=0. ie. 2g'(t)=0g'(t)=0, so at t=1 and 3 This has stationary points at (1, -5) and $(3, 8e^{-3} - 5)$
- **c** i If this has one stationary value only then the discriminant of the quadratic factor is zero.

Therefore $\Delta = (2 - a)^2 + 4 (a - 10)$ Therefore $4 - 4a + a^2 + 4a - 40 = 0$ $a^2 - 36 = 0$ and so $a = \pm 6$

ii If h'(t) < 0 for all t then the same discriminant must be negative as $e^{-t} > 0$ for all t. Therefore $a^2 - 36 < 0$ and so -6 < a < 6.

Question 2

a. Greater than the A Standard: Probability = normalcdf (81.8, 10^{10} , 80.8, 4.5) = 0.412 Greater than A but less than Olympic: Probability = normalcdf (81.8, 90.17, 80.8, 4.5) = 0.393 Greater than Olympic: Probability = normalcdf (90.17, 10^{10} , 80.8, 4.5) = 0.019

- **b.** Invnorm (0.1, 80.8, 4.5) = 75.03 and so M = 75.03
 - **c.** Pr (X > A / X < Olympic) = $\frac{0.4121 0.01866}{1 0.01866}$ = 0.401
 - **d.** The following table assists in finding this reward:

Length of throw	Amount paid \$	Probability
Under personal best (PB)	0	0.5
Between PB and A	1000	0.088
Between A and Olympic	2000	0.393
Over Olympic	10000	0.019
Expected reward $= 0 \times 0.5$	$+1000 \times 0.088 + 2000 >$	$< 0.393 + 10000 \times 0.019$
= 0 + 88	+786 + 190	
= 1064		
Answer: \$1060 (to nearest	\$10)	
e. i $5 \times 1064 = 5320$ Answer: \$5320 ii Binomial distribution: r i.e. Bi $(5, 0.412)$ Probability of at least th Pr $(3) + Pr (4) + Pr (5)$	ree throws = Pr (X=3) + $(X=3) + 1$ = ${}^{5}C_{3} (.412)^{3} (.588)^{2} + {}^{5}C_{4}$ = 0.2418 + 0.0847 + 0.01 = 0.3384	=0.412 Pr (X=4) + Pr (X=5) $_{4} (.412)^{4} (.588)^{1} + (.412)^{5}$ 187
Answer: 0.338		
iii Expected number = $n p$	$= 5 \times 0.412$	
Answer: 2.06		

- **iv** Pr (Throws at least one Olympic Record) + Pr(Throws all five greater than Standard but less than Olympic)
 - $= (1 Pr (throwing no Olympic)) + 0.393^{5}$
 - $=(1-0.981^5)+0.393^5$
 - =(1-0.9085)+0.0094
 - = 0.101

Question 3

a. 150 m

- **b.** 50 m
- **c. i** 800 m

ii 1200 - 800 = 400 m

d. Solve $y_1 = 100 \cos\left(\frac{\pi(x-400)}{600}\right) + 50$ and $y_2 = 20$ to find intersection points on

the graphics calculator. The two values of x found are 41.81 and 758.19.

The length of the tunnel = 758.19 - 41.81

= 716 m (to the nearest metre).

e.
$$\int_{1200}^{800} (100 \cos\left(\frac{\pi(x-400)}{600}\right) + 50) dx$$
$$= \left[\frac{100 \times 600}{\pi} \sin\left(\frac{\pi(x-400)}{600}\right) + 50x\right]_{1200}^{800}$$
$$= \left(\frac{60000}{\pi} \sin\left(\frac{400\pi}{600}\right) + 40000\right) - \left(\frac{60000}{\pi} \sin\left(\frac{800}{600}\right) + 60000\right)$$
$$= 13080 \text{ m}^2 \text{ (to the nearest square metre).}$$

f. i
$$800 - 2k$$

ii $400 + 2k$
iii $C = (800 - 2k)^2 + (400 + 2k)^2$
iv $\frac{dC}{dk} = 2 \times -2 (800 - 2k) + 2 \times 2 (400 + 2k)$
 $= -3200 + 8k + 1600 + 8k$
 $= 0$ for a minimum
 $0 = 16k - 1600$ and so $k = 100$.

Question 4

a. $y = \frac{p}{4} + \frac{q}{8}$

Two features need to be shown here:

- the end-points need to be closed and filled in
- the addition graph is to have a minimum *above* the intersection of the two original graphs.

- c. $y = \frac{9}{x+1} + \frac{4}{11-x}$ $\frac{dy}{dx} = \frac{-9}{(x+1)^2} + \frac{4}{(11-x)^2}$ $\frac{-9}{(x+1)^2} + \frac{4}{(11-x)^2} = 0$ for a minimum value.
- **d. i** Now adding these two fractions together gives:

 $\frac{-9(11-x)^2 + 4(x+1)^2}{(x+1)^2(11-x)^2} = 0$ If this fraction is zero then the numerator is zero: $4(x+1)^2 - 9(11-x)^2 = 0$ This can be factorised using the difference of two squares: [2(x+1) - 3(11-x)][2(x+1) + 3(11-x)] = 0 [2x+2-33+3x][2x+2+33-3x] = 0 (5x-31)(-x+35) = 0Hence x = 6.2 is the only answer within the domain. When x = 6.2 then the minimum is 2.083 (correct to three decimal places).

ii Solve $\frac{9}{x+1} + \frac{4}{11-x} = 5$ using the calculator to give x = 0.956.

The pollution level will be less than 5 for a journey from x = 0.956 to x = 10, which is a distance of 9.044 km.

e.
$$\int_{0}^{10} \left(\frac{9}{x+1} + \frac{4}{11-x}\right) dx$$

= $\left[9\log_{e}(x+1) - 4\log_{e}(11-x)\right]_{0}^{10}$
= $\left(9\log_{e}(11) - 4\log_{e}(1) - (9\log_{e}(1) - 4\log_{e}(11))\right)$
= $13\log_{e}(11)$
Answer: 31.17 correct to two decimal places.