VCAA 2005 Mathematical Methods Written Examination 2

Suggested Answers & Solutions

Question 1

a. i (0, 2]

ii Interchange *t* for *y* and *y* for *t*: $t = 2 e^{-y}$ and so 2 $\frac{t}{2} = e^{-y}$ Taking logarithm of both sides (to base *e*): log_e 2 $\frac{t}{2}$) = log_e(e^{-y}) = -y Hence $f^{-1}(t) = -\log_e(t)$ 2 $\frac{t}{2}$) and the domain is (0, 2]

b. i Using the Product Rule $g'(t) = 2(t-1)e^{-t} - (t-1)^2 e^{-t}$ $= [2 t - 2 - (t^2 - 2 t + 1)] e^{-t}$ $= (-t^2+4t-3)e^{-t}$

Answers: $b = 4$, $c = -3$

- **ii** $g'(t) = -(t-1)(t-3)e^{-t}$ $= 0$ for stationary values. This occurs at $t = 1$ and $t = 3$. It should be noted that e^{-t} is never zero. When $t = 1$, $g(1) = 0$ and so one stationary value is $(1, 0)$. When $t = 3$, $g(3) = (3-1)^2 e^{-3} = 4 e^{-3}$ and so the other stationary value is $(3, 4e^{-3})$. Answers: $p = 0$, $m = 3$ and $n = 4 e^{-3}$
- **iii** $q(t) = 2(t-1)^2 e^{-t} 5$ Stationary points occur when $q'(t)=0$. ie. $2g'(t)=0$ $g'(t)=0$, so at t=1 and 3 This has stationary points at $(1, -5)$ and $(3, 8e^{-3} - 5)$
- **c i** If this has one stationary value only then the discriminant of the quadratic factor is zero.

 $\Delta = (2 - a)^2 + 4 (a - 10)$ Therefore $4 - 4a + a^2 + 4a - 40 = 0$ $a^2 - 36 = 0$ and so $a = \pm 6$

ii If $h'(t) < 0$ for all *t* then the same discriminant must be negative as $e^{-t} > 0$ for all *t* . Therefore $a^2 - 36 < 0$ and so $-6 < a < 6$.

Question 2

a. Greater than the A Standard: Probability = normalcdf (81.8, 10^{10} , 80.8, 4.5) = 0.412 Greater than A but less than Olympic: Probability = normalcdf $(81.8, 90.17, 80.8, 4.5) = 0.393$ Greater than Olympic: Probability = normalcdf (90.17, 10^{10} , 80.8, 4.5) = 0.019

- **b.** Invnorm $(0.1, 80.8, 4.5) = 75.03$ and so M = 75.03
	- **c.** Pr $(X > A / X < Olympic) =$ $1 - 0.01866$ $0.4121 - 0.01866$ − − $= 0.40$
	- **d.** The following table assists in finding this reward:

ii Binomial distribution: $n=5$ and $p = 0.393+0.019=0.412$ i.e. Bi(5, 0.412) Probability of at least three throws = $Pr(X=3) + Pr(X=4) + Pr(X=5)$ $Pr (3) + Pr (4) + Pr (5) = {}^{5}C_{3} (0.412)^{3} (0.588)^{2} + {}^{5}C_{4} (0.412)^{4} (0.588)^{1} + (0.412)^{5}$ $= 0.2418 + 0.0847 + 0.01187$ $= 0.3384$

Answer: 0.338

- **iii** Expected number = $n p = 5 \times 0.412$ Answer: 2.06
- **iv** Pr (Throws at least one Olympic Record) + Pr(Throws all five greater than Standard but less than Olympic)
	- $= (1 Pr (through one Olympic)) + 0.393⁵$
- $= (1 0.981⁵) + 0.393⁵$
	- $= (1 0.9085) + 0.0094$
	- $= 0.101$

Question 3

a. 150 m

b. 50 m

c. i 800 m

ii $1200 - 800 = 400$ m

d. Solve $y_1 = 100 \cos \left(\frac{\lambda (x - 400)}{600} \right)$ J $\frac{\pi(x-400)}{200}$ l $\int \pi(x-$ 600 $\left(\frac{\pi(x-400)}{600}\right)$ + 50 and y₂ = 20 to find intersection points on

the graphics calculator. The two values of *x* found are 41.81 and 758.19.

The length of the tunnel = $758.19 - 41.81$

 $= 716$ m (to the nearest metre).

e.
$$
\int_{1200}^{800} (100 \cos \left(\frac{\pi (x - 400)}{600} \right) + 50) dx
$$

=
$$
\left[\frac{100 \times 600}{\pi} \sin \left(\frac{\pi (x - 400)}{600} \right) + 50x \right]_{1200}^{800}
$$

=
$$
\left(\frac{60000}{\pi} \sin \left(\frac{400\pi}{600} \right) + 40000 \right) - \left(\frac{60000}{\pi} \sin \left(\frac{800}{600} \right) + 60000 \right)
$$

= 13080 m² (to the nearest square metre).

f. i
$$
800 - 2k
$$

\nii $400 + 2k$
\niii $C = (800 - 2k)^2 + (400 + 2k)^2$
\niv $\frac{dC}{dk} = 2 \times -2 (800 - 2k) + 2 \times 2 (400 + 2k)$
\n $= -3200 + 8k + 1600 + 8k$
\n $= 0$ for a minimum
\n $0 = 16k - 1600$ and so $k = 100$.

Question 4

a. $y =$ 4 8 $\frac{p}{+}$ $\frac{q}{-}$ **b.**

Two features need to be shown here:

- the end-points need to be closed and filled in
- the addition graph is to have a minimum *above* the intersection of the two original graphs.
- **c.** $y = \frac{y}{x+1} + \frac{1}{11-x}$ + $+1$ ¹¹ 4 1 9 $\frac{dy}{dx} = \frac{y}{(x+1)^2} + \frac{1}{(11-x)^2}$ 4 $(x+1)$ 9 *dx* $(x+1)^2$ $(11-x)$ *dy* − + + $=\frac{-9}{(1+3)^2}+\frac{4}{(1+3)^2}$ $\frac{y}{(x+1)^2} + \frac{1}{(11-x)^2}$ 4 $(x+1)$ 9 $(x+1)^2$ $(11-x)$ + + − $= 0$ for a minimum value.
- **d. i** Now adding these two fractions together gives:

 $\frac{2(x+1)^2 + 4(x+1)}{(x+1)^2(1+x)^2}$ 2 $1/(x+1)^{2}$ $(x+1)^2(11-x)$ $9(11 - x)^2 + 4(x + 1)$ $(x+1)^2(11-x)$ $(x)^{2} + 4(x)$ $+1)^2(11 -9(11-x)^2 + 4(x+)$ $= 0$ If this fraction is zero then the numerator is zero: $4(x+1)^2 - 9(11-x)^2 = 0$ This can be factorised using the difference of two squares: $[2(x+1)-3(11-x)][2(x+1)+3(11-x)]=0$ $[2x + 2 - 33 + 3x][2x + 2 + 33 - 3x] = 0$ $(5x-31)(-x+35) = 0$ Hence $x = 6.2$ is the only answer within the domain. When $x = 6.2$ then the minimum is 2.083 (correct to three decimal places).

ii Solve $\frac{x+1}{x+1} + \frac{1}{11-x}$ + $+1$ ¹¹ 4 1 $\frac{9}{2} + \frac{4}{11} = 5$ using the calculator to give $x = 0.956$.

The pollution level will be less than 5 for a journey from $x = 0.956$ to $x = 10$, which is a distance of 9.044 km.

e.
$$
\int_{0}^{10} \frac{9}{x+1} + \frac{4}{11-x} dx
$$

=
$$
[9\log_e(x+1) - 4\log_e(11-x)]_{0}^{10}
$$

=
$$
(9\log_e(11) - 4\log_e(1) - (9\log_e(1) - 4\log_e(11))
$$

=
$$
13 \log_e(11)
$$

Answer:
$$
31.17
$$
 correct to two decimal places.