

UNIT 4 MATHEMATICAL METHODS 2005 TRIAL EXAMINATION SOLUTIONS

WRITTEN EXAMINATION 1

FACTS, SKILLS AND APPLICATION TASKS

	Answer		Answer
Question 1	С	Question 16	С
Question 2	D	Question 17	В
Question 3	В	Question 18	D
Question 4	В	Question 19	А
Question 5	С	Question 20	А
Question 6	D	Question 21	С
Question 7	D	Question 22	Е
Question 8	А	Question 23	D
Question 9	В	Question 24	В
Question 10	А	Question 25	Е
Question 11	Е	Question 26	D
Question 12	С	Question 27	С
Question 13	D		
Question 14	D		
Question 15	В		

PART I – MULTIPLE CHOICE QUESTIONS

QUESTION 1 Answer is C

For tangent functions: $T = \frac{\pi}{magnitude \ of \ coefficient \ of \ x} = \frac{\pi}{2}$

QUESTION 2 Answer is D

 $y = a(\sin x - 1) = a \sin x - a$ Max value = a + -a = 0Min value = -a + -a = -2aRange is [-2a, 0] = D

QUESTION 3 Answer is B

 $a\cos(x-b) = c$

 $\cos(x-b) = \frac{c}{a}$

A solution exists if $-1 \le \frac{c}{a} \le 1$. If $\frac{c}{a} < -1$, no solution exists i.e. c < -a OR If $\frac{c}{a} > 1$, no solution exists i.e. c > a

QUESTION 4 Answer is B

 $\log_{a} 3 + 2\log_{a} (2x+1) = \log_{a} 48$ $\log_{a} 3 + \log_{a} (2x+1)^{2} = \log_{a} 48$ $\log_{a} 3(2x+1)^{2} = \log_{a} 48$

 $3(2x+1)^2 = 48$ $(2x+1)^2 = 16$ $(2x+1) = \pm 4$ $x = -\frac{5}{2}, \frac{3}{2}$ Check validity of solutions: $x \neq -\frac{5}{2}$

QUESTION 5 Answer is C

 $(x+a)(x^{2}+b)(x-c)^{2} = 0$

(x+a) = 0 or $(x^2+b) = 0$ or $(x-c)^2 = 0$ x = -a No solution x = c

Two real number solutions will be obtained.

QUESTION 6 Answer is D

QUESTION 7 Answer is D

4 - at > 0-at > -4at < 4 $\therefore t = \frac{4}{a}$

QUESTION 8 Answer is A

Sign of graph = $(+) \times (+) \times (-)^2 = +$. Therefore, options A, B or C.

X intercept occurs at (x+b) = 0 $\therefore x = -b$. Curve cuts at this point as power on brackets is 1.

X intercept occurs at $(a - x)^2 = 0$ $\therefore x = a$. Curve touches at this point as power on brackets is 2.

QUESTION 9 Answer is B

QUESTION 10 Answer is A

QUESTION 11 Answer is E

Negative hyperbola, therefore, coefficient of x must be negative. Answer is B, D or E. Y asymptote is negative (-b), therefore, vertical translation is b units in the negative direction. There must be a -1 separate from the fraction. Answer is D or E. X asymptote is positive (a). The denominator of the fraction, when made equal to 0 must result in an answer of x = a. Answer is E.

QUESTION 12 Answer is C

Turning point is (-a, -b) therefore, maximal domain is based on the value x = -a, and can be either greater than or less than this value.

QUESTION 13 Answer is D

$$f(x) = 2x^{3} - x + \sqrt{x} = 2x^{3} - x + x^{\frac{1}{2}}$$
$$f'(x) = 6x^{2} - 1 + \frac{1}{2\sqrt{x}}$$
$$f'(a) = 6a^{2} - 1 + \frac{1}{2\sqrt{a}}$$

QUESTION 14 Answer is D

 $y = \cos^{3}(2x) = (\cos(2x))^{3}$ $\frac{dy}{dx} = 3 \times -2\sin(2x) \times \cos^{2}(2x) = -6\sin(2x)\cos^{2}(2x)$

QUESTION 15 Answer is B

$$y = \frac{\cos x}{e^{2x}}$$
 Apply Quotient Rule
$$\frac{dy}{dx} = \frac{\left(e^{2x} \times -\sin x\right) - (\cos x \times 2e^{2x})}{(e^{2x})^2} = \frac{-e^{2x} \sin x - 2\cos xe^{2x}}{(e^{2x})^2}$$
$$= \frac{-e^{2x} (\sin x + 2\cos x)}{(e^{2x})^2} = \frac{-(\sin x + 2\cos x)}{e^{2x}}$$

QUESTION 16 Answer is C

Container is filled from the bottom up.

Initial part of container – height of water increases by the same amount per unit time. Therefore h vs t graph is an oblique line. Answer is B or C.

Middle part of container is becoming wider. The height occupied by water will decrease per unit time. Gradient of curve is decreasing, therefore, shape of graph resembles:

Top part of container is becoming narrower. The height occupied by water will increase per unit time. Gradient of curve is increasing, therefore, shape of graph resembles:

QUESTION 17 Answer is B

QUESTION 18 Answer is D

$$f'(x) = 2\sin\left(2x - \frac{\pi}{2}\right)$$

As
$$f(x) = \int f'(x) dx$$

$$\therefore f(x) = \int 2\sin\left(2x - \frac{\pi}{2}\right) dx = 2\int \sin\left(2x - \frac{\pi}{2}\right) dx = \frac{2 \times -\cos\left(2x - \frac{\pi}{2}\right)}{2} + c$$

$$\therefore f(x) = -\cos\left(2x - \frac{\pi}{2}\right) + c$$

When $x = \frac{\pi}{4}$, y = 1

 $\therefore 1 = -\cos\left(\frac{2\pi}{4} - \frac{\pi}{2}\right) + c$

$$1 = -\cos(0) + c$$

 $\therefore 1 = -1 + c \qquad \therefore c = 2$ $\therefore f(x) = -\cos\left(2x - \frac{\pi}{2}\right) + 2$

QUESTION 19 Answer is A

$$\int (5-3x)^3 dx = \frac{(5-3x)^4}{4 \times -3} + c = -\frac{(5-3x)^4}{12} + c$$

QUESTION 20 Answer is A

$$\int_{0}^{a} \left(\frac{2}{4x+1}\right) dx = \frac{1}{2} \int_{0}^{a} \left(\frac{4}{4x+1}\right) dx = \frac{1}{2} \left[\log_{e}(4x+1)\right]_{0}^{a} = \frac{1}{2} \left[\log_{e}(4a+1) - \log_{e}1\right]$$
$$= \frac{1}{2} \log_{e}(4a+1) = \log_{e}(4a+1)^{\frac{1}{2}}$$
$$\log_{e}(4a+1) = \log_{e}(4a+1)^{\frac{1}{2}}$$

$$\log_{e} (4a+1)^{\frac{1}{2}} = \log_{e} k$$

k = $\sqrt{4a+1}$

QUESTION 21 Answer is C

The antiderivative of -ax results in $-\frac{ax^2}{2} + c$ i.e. a negative quadratic curve is required.

QUESTION 22 Answer is E

Note that: $\int_{b}^{c} [g(x) - f(x)] dx = -\int_{b}^{c} [f(x) - g(x)] dx$

QUESTION 23 Answer is D

General term $= {}^{5}C_{r}(4)^{5-r}(-ax)^{r}$ For x^{3} , r = 3

 ${}^{5}C_{3}(4){}^{5-3}(-ax){}^{3} = 10 \times 16 \times -a{}^{3}x{}^{3} = -160a{}^{3}x{}^{3}$ The coefficient of $x{}^{3} = -160a{}^{3} = -4320 \therefore a = 3$

QUESTION 24 Answer is B

QUESTION 25 Answer is E

n is the same for both distributions.

A is positively skewed so p < 0.5. B is negatively skewed so p > 0.5. As $\mu = np$, $\mu_B > \mu_A$. Answer is A or E.

As curves are mirror images about X = 10, sum of p values will equal to 1. Therefore, σ 's are equal. Answer is E.

QUESTION 26 Answer is D

As order is important the standard probability formula cannot be applied.

Pr(bull's eye last 2 rounds) = $\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{2}{3} \times \frac{2}{3} = \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^2$

QUESTION 27 Answer is C

z values to the left of the mean are negative. \therefore A is correct.

Normal curves are symmetrical about the mean, irrespective of whether z or X values are being used. \therefore B is correct.

C cannot be the correct answer as a and b represent z values – not X.

PART II - SHORT ANSWER QUESTIONS

QUESTION 1

a. As P(2) = 0: $2(2)^3 + 3(2)^2 + 2a + b = 0$ 2a + b = -28

As
$$P(-3) = 0$$
: $2(-3)^3 + 3(-3)^2 - 3a + b = 0$
 $-3a + b = 27$

Solve equations simultaneously:	$2a + b = -28$ _
	-3a + b = 27

$\therefore a = -11$ and b = -6

b. To write f(x) in the form $a + \frac{b}{x+2}$: Long Division is required.

1

$$x+2$$
 $x-2$
 $x+2$
 -4
Therefore, $f(x) = \frac{x-2}{x+2} = 1 - \frac{4}{x+2}$.

QUESTION 2

Note: Functions can only be added, subtracted (multiplied and divided) across the common domain.

QUESTION 3

$$\sin\left(2x + \frac{\pi}{3}\right) = -\sqrt{3}\cos\left(2x + \frac{\pi}{3}\right)$$

Divide both sides by $\cos\left(2x + \frac{\pi}{3}\right)$:

$$\frac{\sin\left(2x+\frac{\pi}{3}\right)}{\cos\left(2x+\frac{\pi}{3}\right)} = -\frac{\sqrt{3}\cos\left(2x+\frac{\pi}{3}\right)}{\cos\left(2x+\frac{\pi}{3}\right)}$$

 $\tan\left(2x+\frac{\pi}{3}\right) = -\sqrt{3}$

1st Quadrant angle: $Tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

Solutions to lie in Quadrants 2 and 4.

$$\left(2x + \frac{\pi}{3}\right) = \pi - \frac{\pi}{3} \quad \text{or} \quad \left(2x + \frac{\pi}{3}\right) = 2\pi - \frac{\pi}{3}$$
$$x = \frac{\pi}{6}, \frac{2\pi}{3}$$

QUESTION 4

a. $y = -3e^{2x} + 1$

When x = 0: $y = -3e^0 + 1 = -2$: (0, -2)

$$\frac{dy}{dx} = -6e^{2x}$$
. When $x = 0$: $\frac{dy}{dx} = -6e^{0} = -6$

$$m_{normal} = -\frac{1}{m_{\tan gent}} = \frac{1}{6}$$

Equation Normal: $y - y_1 = m(x - x_1)$ x

$$y + 2 = \frac{x}{6}$$
$$y = \frac{x}{6} - 2$$

b. $y = -3e^{2x} + 1$

X intercept, let y = 0:

$$-3e^{2x} + 1 = 0$$

$$e^{2x} = \frac{1}{3}$$

$$\log_e e^{2x} = \log_e \frac{1}{3}$$

$$2x = \log_e \frac{1}{3}$$

$$x = \frac{1}{2}\log_e \frac{1}{3}$$
Coordinates: $\left(\frac{1}{2}\log_e \frac{1}{3}, 0\right)$

QUESTION 5

a.
$$\int_{1}^{5} \frac{f(x)}{2} dx = \frac{1}{2} \int_{1}^{5} f(x) dx = \frac{1}{2} \times 20 = 10$$

b.
$$\int_{1}^{5} [f(x) + 1] dx = \int_{1}^{5} f(x) dx + \int_{1}^{5} 1 dx = 20 + [x]_{1}^{5}$$
$$= 20 + (5 - 1) = 24$$

c.
$$\int_{5}^{1} f(x) dx + 1 = -\int_{1}^{5} f(x) dx + 1 = -20 + 1 = -19$$

QUESTION 6

Gradient of line $=\frac{rise}{run}=\frac{1.5}{3}=0.5$.

Draw tangents at x = -4 and x = 2, select 2 points that lie on each tangent and calculate the corresponding gradients.

At x = -4, $m \approx -2$.

At x = 2, $m \approx 1$.

As a stationary point exists at x = 0 for f(x), the graph of f'(x) will cut the X axis at x = 0.

Note: Gradients are undefined at the end points of a domain. Therefore, use open circles at the end points.

QUESTION 7

a. $Pr(X < 98) = normalcdf(-1 \times 10^{99}, 98, 100, 3) = 0.252$

Note: Variance is 9, therefore, standard deviation is 3.

b. Hypergeometric as we are sampling without replacement.

Let X = number of underweight packets.

$$\Pr(X=2) = \frac{\binom{6}{2}\binom{24}{0}}{\binom{30}{2}} = \frac{15 \times 1}{435} = \frac{1}{29}$$

c. Box is rejected if:

(The 2 packets removed from the first sampling are underweight) AND (1, 2 or 3 packets are underweight from the second sampling).

Second Sampling
=
$$\frac{1}{29} \times \left[\Pr(X=1) + \Pr(X=2) + \Pr(X=3) \right]$$

= $\frac{1}{29} \times \left[1 - \Pr(X=0) \right] = \frac{1}{29} \times \left[1 - \frac{\binom{4}{0}\binom{24}{3}}{\binom{28}{3}} \right]$

$$= \frac{1}{29} \times \left(1 - \frac{2024}{3276}\right) = 0.013$$

Note: This part of the question requires hypergeometric manipulations as we are continuing to sample without replacement. However, a number of variables have changed in value. The sample size has decreased from 30 to 28 as 2 packets were removed in the first sampling. The number of underweight packets has decreased from 6 to 4 as 2 underweight packets were removed in the first sampling.