

P.O. Box 1180 Surrey Hills North VIC 3127 ABN 20 607 374 020 Phone 9836 5021 Fax 9836 5025

Question 1

a.
$$0 \cdot 27 + 0 \cdot 13 + 0 \cdot 19 + 0 \cdot 34 + a = 1$$

 $a = 0 \cdot 07$

MATHS METHODS 3 & 4 TRIAL EXAMINATION 1 SOLUTIONS 2006

(1 mark)

b.
$$Pr(X < 3) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2)$$

= 0 \cdot 27 + 0 \cdot 13 + 0 \cdot 19
= 0 \cdot 59

(1 mark)

c. mean of
$$X = E(X)$$

= $0 \times 0.27 + 1 \times 0.13 + 2 \times 0.19 + 3 \times 0.34 + 4 \times 0.07$
= 1.81

(1 mark)

If an incorrect value resulting from part **a**. is used and the resulting answer is correct the mark should be awarded.

d. The median is 2.

The median is the middle score. Half the scores are above it and half below. Now, $Pr(X \le 0) = 0.27$

$$Pr(X \le 1) = 0 \cdot 27 + 0 \cdot 13$$

= 0 \cdot 4
$$Pr(X \le 2) = 0 \cdot 27 + 0 \cdot 13 + 0 \cdot 19$$

= 0 \cdot 59

So the median of X is 2 since half the scores are below it.

(1 mark)

Question 2

a.
$$\frac{d}{dx} (e^{2x} \tan(2x))$$

= $e^{2x} \times 2 \sec^2(2x) + 2e^{2x} \tan(2x)$ (1 mark)
= $2e^{2x} (\sec^2(2x) + \tan(2x))$ (1 mark)

b.
$$\int (2x+3)^5 dx = \frac{1}{2(5+1)} (2x+3)^6 + c$$
$$= \frac{1}{12} (2x+3)^6 + c$$

a.
$$g(f(x))$$
 exists iff $r_f \subseteq d_g$
Now, $d_f = [0, \infty)$.
A quick sketch enables you to find r_f .
 $r_f = [2, \infty)$ (1 mark)
Now, $d_g = R^+$
so, $[2, \infty) \subseteq R^+$
so $g(f(x))$ exists

(1 mark)

(1 mark)

b.
$$g^{-1}$$
 exists iff the graph of $y = g(x)$ is 1:1.

Again, a quick sketch tells us whether g is a 1:1 function.

Since any horizontal line can be drawn on the graph so that it crosses the function only once, it is a 1:1 function. So g^{-1} exists.

 $y = e^{-x}$

Let $y = x^2 + 2$ Swap x and y $x = y^2 + 2$ Rearrange $y^2 = x - 2$ $y = \pm \sqrt{x - 2}$ (1 mark) Since $d_f = [0, \infty)$ and $r_f = [2, \infty)$ from part **a.**, $d_{f^{-1}} = [2,\infty) \text{ and } r_{f^{-1}} = [0,\infty)$ then So the rule for f^{-1} is $y = \sqrt{x-2}$. Note that we reject $y = -\sqrt{x+2}$ because the range of f^{-1} contains only positive values. (1 mark) Also $d_{f^{-1}} = [2, \infty)$. (1 mark)

Question 4

c.

$$2\sin(2x) = -\sqrt{3} \qquad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\sin(2x) = -\frac{\sqrt{3}}{2} \qquad \text{so } 2x \in [-\pi, \pi] \qquad (1 \text{ mark}) \qquad \frac{S \mid A}{T \mid C}$$

$$x = -\frac{\pi}{3}, -\frac{\pi}{6} \qquad (1 \text{ mark}) \qquad (1 \text{ mark})$$

2

a.
$$f(x) = 2 \tan\left(\frac{1}{2}\left(x - \frac{\pi}{4}\right)\right)$$

period = $\pi \div \frac{1}{2}$
= 2π

(1 mark)

b.

$$x = -\frac{3\pi}{4}$$

$$y$$

$$x = \frac{5\pi}{4}$$

$$y$$

$$x = \frac{5\pi}{4}$$

$$y = 2 \tan(\frac{1}{2}(x - \frac{\pi}{4}))$$
(1 mark)
The period is 2π and the graph is translated $\frac{\pi}{4}$ units right.
The asymptotes therefore occur at $x = -\frac{3\pi}{4}$ and $x = \frac{5\pi}{4}$. (1 mark)
The x-intercept occurs at $\left(\frac{\pi}{4}, 0\right)$.
The y-intercept occurs when

$$y = 2 \tan\left(\frac{1}{2}\left(0 - \frac{\pi}{4}\right)\right)$$

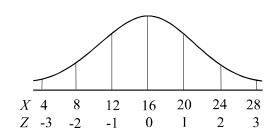
$$= 2 \tan\left(-\frac{\pi}{8}\right)$$

$$= 2 \times -0.41$$
 (given in question)

$$= -0.82$$
The y-intercept occurs at $(0, -0.82)$.

(1 mark) for intercepts

Sketch a quick diagram.



a. The normal curve is symmetrical around the mean. So Pr(X > (16+6)) = Pr(X < (16-6))Pr(X > 22) = Pr(X < 10)So a = 10

- (1 mark)
- b. $\frac{\text{Method 1}}{\Pr(X < 7) = \Pr(Z > b)}$ $\Pr(X < 7) = \Pr(X < (16 9))$ Since $\sigma = 4$, 9 below the mean represents $\frac{9}{4} = 2 \cdot 25$ standard deviations below the mean. $\Pr(X < 7) = \Pr(Z < -2 \cdot 25)$ $= \Pr(Z > 2 \cdot 25)$ So $b = 2 \cdot 25$ (1 mark)

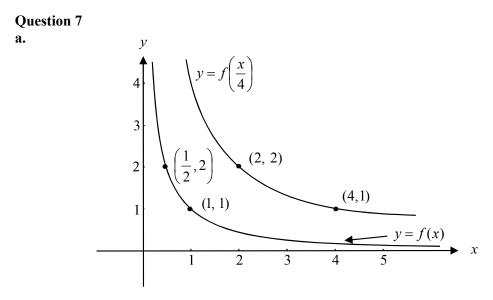
$$\frac{\text{Method } 2}{Z = \frac{X - \mu}{\sigma}}$$

$$= \frac{7 - 16}{4}$$

$$= -2.25$$

$$\Pr(X < 7) = \Pr(Z < -2.25)$$

$$= \Pr(Z > 2.25)$$
So $b = 2.25$



(1 mark) (correct shape)

(1 mark) (showing coordinates of 2 correct points)

b. The graph of y = f(x) has been dilated by a factor of 4 parallel to the x-axis or in the x direction or away from the y –axis. (1 mark) $\langle \rangle$

c.
$$y = f\left(\frac{x}{4}\right)$$

 $= 1 \div \frac{x}{4}$
 $y = \frac{4}{x}$ (1 mark)

Question 8

 $y = -x^2 + 5x$ when x = 1y = -1 + 5= 4

Point of tangency is (1, 4).

$$\frac{dy}{dx} = -2x + 5$$
At $x = 1$, $\frac{dy}{dx} = 3$
(1 mark)

The equation of the tangent at (1,4) is

$$y - 4 = 3(x - 1)$$

$$y = 3x - 3 + 4$$

$$y = 3x + 1$$

rosses the x-axis when $y = 0$

$$0 = 3x + 1$$

(1 mark)

This tangent cr

 $x = -\frac{1}{3}$ So $a = -\frac{1}{3}$ (1 mark)

a. The function *f* crosses the *x*-axis at x = a so one linear factor is (x - a). The function *f* touches the *x*-axis at x = c so there is a repeated linear factor of (x - c). The three linear factors are x - a, x - c, x - c.

b.
$$f(x) > 0$$
 for $x \in (a, c) \cup (c, \infty)$ or $(a, \infty) \setminus \{c\}$ (1 mark)

c.
$$f'(x) < 0$$
 for $x \in (0, c)$

(1 mark)

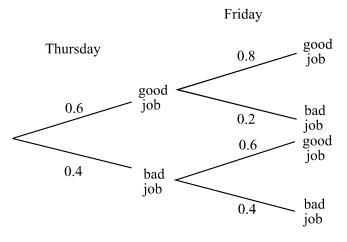
(1 mark)

Question 10

a. The probability that a team does a bad job when the previous day's team did a good job is $1 - 0 \cdot 8 = 0 \cdot 2$.

(1 mark)

b. This is a multi-stage event; that is, it involves what happens on Thursday and then on Friday.
 A tree diagram is useful.

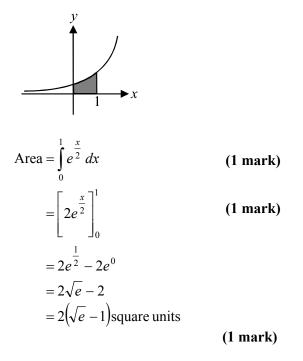


(1 mark)

Pr(Friday's team does a good job)

= Pr(good job Thursday and good job Friday) + Pr(bad job Thursday and good job Friday)= $0 \cdot 6 \times 0 \cdot 8 + 0 \cdot 4 \times 0 \cdot 6$ (1 mark) = $0 \cdot 48 + 0 \cdot 24$ = $0 \cdot 72$

Sketch the graph.



Total 40 marks