VCE 2006 Mathematical Methods Trial Examination 2

Suggested Solutions

© Kilbaha Multimedia Publishing 2006

Kilbaha Multimedia Publishing ABN 47 065 111 373 PO Box 2227 Kew Vic 3101 Australia Tel: 03 9817 5374 Fax: 03 9817 4334 chemas@chemas.com www.chemas.com

PURPOSE OF THIS TRIAL EXAMINATION

This Mathematics Methods Trial Examination is designed to assess

- understanding and communication of mathematical ideas
- interpretation, analysis and solution of routine problems
- interpretation, analysis and solution of non-routine problems

Assessment is by multiple-choice questions and extended answer questions involving multi-stage solutions of increasing complexity.

IMPORTANT COPYRIGHT NOTICE

- This material is copyright. Subject to statutory exception and to the provisions of the relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Kilbaha Multimedia Publishing.
- The contents of this work are copyrighted. Unauthorised copying of any part of this work is illegal and detrimental to the interests of the author.
- For authorised copying within Australia please check that your institution has a licence from Copyright Agency Limited. This permits the copying of small parts of the material, in limited quantities, within the conditions set out in the licence.
- Teachers and students are reminded that for the purposes of school requirements and external assessments, students must submit work that is clearly their own.
- Schools which purchase a licence to use this material may distribute an electronic file to the students at the school for their exclusive use. This distribution can be done either on an Intranet Server or on media for the use on stand-alone computers.
- Schools which purchase a licence to use this material may distribute a printed copy to the students at the school for their exclusive use.
- The Word file of this material (if supplied) is for use **only** within the school
- The Word file may be modified to suit the school syllabus and for teaching purposes.
- All modified versions of the Word file must carry this copyright notice.
- Commercial use of any content in this Trial Examination is expressly prohibited.

Question 1 D Sketch the graphs on the calculator. There are three solutions at $x = -0.77$, 2 and 4.	Question 2 C $g\{f(x)\} = \log_e(x^2 - 9)$ $x^2 - 9 > 0$ $\Rightarrow x^2 > 9$
Ougstion 3 E	$\Rightarrow \pm x > 3$ $\Rightarrow x < -3 \text{ or } x > 3$ Domain $(-\infty, -3) \cup (3, \infty)$ Question 4 A
Question 3 E The inverse only exists for a one-to-one function. The graph is one-to-one for $-\frac{\pi}{2} \le 3x \le \frac{\pi}{2} \Rightarrow -\frac{\pi}{6} \le x \le \frac{\pi}{6}$	$x^{2} = 1 + 4 + 9 + 16 + 25$ $Pr(X = x) = 1$ $\Rightarrow 55k^{2} = 1$ $\Rightarrow k^{2} = \frac{1}{55}$ $\Rightarrow k = \pm \frac{1}{\sqrt{55}} \times \frac{\sqrt{55}}{\sqrt{55}} = \pm \frac{\sqrt{55}}{55}$
Question 5 E	Question 6 A
$2(1 - \cos^{2} \theta) - 7\cos \theta + 2 = 0$ $\Rightarrow 2 - 2\cos^{2} \theta - 7\cos \theta + 2 = 0$ $\Rightarrow -2\cos^{2} \theta - 7\cos \theta + 4 = 0$ $\Rightarrow 2\cos^{2} \theta + 7\cos \theta - 4 = 0$ $\Rightarrow (2\cos \theta - 1)(\cos \theta + 4) = 0$ $\Rightarrow 2\cos \theta - 1 = 0 \text{ or } \cos \theta + 4 = 0$ $\cos \theta = \frac{1}{2} \text{ or } \cos \theta = -4$ But $-1 \le \cos \theta \le 1$ $\Rightarrow \cos \theta = \frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{3}, 2\pi - \frac{\pi}{3} = \frac{\pi}{3}, \frac{5\pi}{3}$ Sum $= \frac{\pi}{3} + \frac{5\pi}{3} = 2\pi$	$f(x) = a(x+1)^{2} (x-3)$ When $x = 0$, $f(x) = 6$ $\Rightarrow 6 = a \times 1 \times -3$ $\Rightarrow a = -2$ $f(x) = -2(x+1)^{2}(x-3)$ $\Rightarrow f(x) = 2(x+1)^{2}(3-x)$

Question 7 B	Question 8 C
$y = 4 - \frac{1}{x - 3}$	$V = \frac{4}{3}\pi r^3$
Interchange x and y	$\frac{dV}{dr} = 4\pi r^2$
$\Rightarrow x = 4 - \frac{1}{y - 3}$	<i>ur</i>
	$\frac{dr}{dt} = 0.1$
$\Rightarrow \frac{1}{y-3} = 4 - x$	$\frac{dt}{dt} = \frac{dV}{dt} \times \frac{dr}{dt} = 4\pi r^2 \times 0.1 = 0.4\pi r^2$
$\Rightarrow y - 3 = \frac{1}{4 - x}$	When $r = 7$,
$\Rightarrow y = \frac{1}{4-x} + 3 = 3 + \frac{-1}{x-4}$	$\frac{dV}{dt} = 0.4 \pi \times 49 = 61.6 \mathrm{cm}^3 \mathrm{sec}^{-1}$
$\Rightarrow y = 3 - \frac{1}{x - 4}$ Question 9 B	
	Question 10 C
Use a graphics calculator to sketch the graphs and find that the points of intersection are	$\int \frac{1}{(3x+2)^{1/2}} dx$
x = 1.57 and $x = 2.2Use the calculator to find the area between the$	$= \int (3x+2)^{-1/2} dx$
curve and the <i>X</i> axis for $y = 6x - 11 $ from x = 1.57 to $x = 2.2$ Area = 1.188	$=\frac{2}{3}(3x+2)^{1/2}+c$
Use the calculator to find the area between the	5
curve and the X axis for $y = x $ from	$=\frac{2\sqrt{3x+2}}{3}+c$
x = 1.57 to $x = 2.2$ Area = 0.576	$=\frac{2\sqrt{3x+2}}{2\sqrt{3x+2}}$
Area between these graphs = $1.188 - 0.576 = 0.612$	$=\frac{1}{3}$

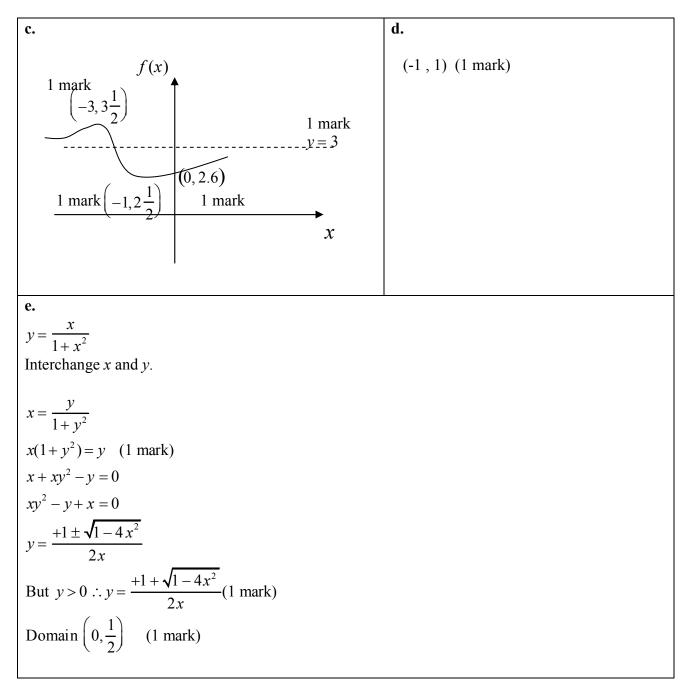
Question 11 E	Question 12 E
When $t = 0, A = A_0 = 200$	The area in answer B can be checked as
$A = 200e^{-kt}$	incorrect by using a graphics calculator.
When $t = 20, A = 100$	dy = x + x + 1
$0.5 = e^{-20k}$	gradient = $\frac{dy}{dx} = xe^x + e^x \times 1$
$\log_e 0.5 = -20k$	$= e^{x}(x+1) = 0$ when $x = -1$
k = 0.035	When $x < -1, \frac{dy}{dr} < 0$
$A = 200e^{-0.035t}$	ил
$\frac{dA}{dt} = 200 \times (-0.035)e^{-0.035t}$	Therefore, negative gradient when $x < -1$
When $t = 30$, $\frac{dA}{dt} = -2.45$	
The isotope is decaying at 2.45 g/day.	
Question 13 A	Question 14 B
$k \int_{0}^{9} x^{2} dx = 1$ $\Rightarrow \frac{kx^{3}}{3} \Big]_{0}^{9} = 1$	$\sqrt{f(x)}$ only exists when $f(x) \ge 0$. That is, when y on the original graph is above or on the X axis.
$\Rightarrow \frac{729k}{3} - 0 = 1$	
$\Rightarrow 243k = 1$	
$\Rightarrow k = \frac{1}{243} = 0.004$	

Question 15 P	Question 16 D
Question 15 B	Question 16 D
	dy = 2 + 4 - 2 + 8x - 4 - 8x - 2
The gradient is positive everywhere	$\frac{dy}{dx} = \frac{2}{2x-1} + 4 = \frac{2+8x-4}{2x-1} = \frac{8x-2}{2x-1}$
except when $x \leq -1$ and when $x = 0$.	dv
x = -1 is a minimum as the graph	When $x = 1, \frac{dy}{dx} = 6$
goes from a negative to a positive	
gradient. $x = 0$ is a stationary point	So, gradient of normal = $-\frac{1}{6}$
of inflexion as the graph goes from a	$\frac{50}{6}$
positive to a positive gradient.	1
r	Equation of normal is $y = -\frac{1}{6}x + c$
	6
	When $x = 1$ on curve $y = \log_e 1 + 4 = 4$
	So point (1, 4) lies on the normal.
	1 25
	Therefore, $4 = -\frac{1}{6} + c \Rightarrow \frac{25}{6} = c$
	6 6
	1 25
	$\Rightarrow y = -\frac{1}{6}x + \frac{25}{6} \Rightarrow 6y + x - 25 = 0$
	0 0

Page 5

Question 17 E	Question 18 B
$A = \int_{1}^{2} \frac{12}{12 - 5x} dx$	B 0.7
$2^{2} -5$	$B \xrightarrow{0.7} D \xrightarrow{0.3}$
$=\frac{2}{-5}\int_{1}^{2}\frac{-5}{12-5x}dx$	
2, (12) , (12)	
$= -\frac{2}{5} \log_e (12 - 5x) \Big]_1^2$	B [/] 0.9
$= -\frac{2}{5}\log_e(2) + \frac{2}{5}\log_e(7)$	B' 0.1 0.7
$=-\frac{1}{5}\log_{e}(2)+\frac{1}{5}\log_{e}(7)$	
$=\frac{2}{5}\left[\log_{e}(7) - \log_{e}(2)\right]$	$B \sim 0.3$
č	$B' \sim B = 0.1$
$= 0.4 \log_e \left(\frac{7}{2}\right)$	B [/] 0.9
$= 0.4 \log_e 3.5$	B B B = $0.5 \times 0.7 \times 0.7 = 0.245$
<i>Detailed</i>	$B B' B = 0.5 \times 0.3 \times 0.1 = 0.015$
	$B' B B = 0.5 \times 0.1 \times 0.7 = 0.035$
	$B'B'B = 0.5 \times 0.9 \times 0.1 = 0.045$
Question 19 C	Total = 0.34 Question 20 E
$E(\cos x)$	1
$\frac{\pi \rho^2}{5} 2$	$\Pr(A) = \frac{1}{6}$
$=\int_{0}^{\pi/2} \frac{2}{\pi} \cos x dx$	$\Pr(B) = \frac{1}{2}$
$\lceil 2 \rceil^{\pi/2}$	2
$= \left[\frac{2}{\pi}\sin x\right]_{0}^{\pi/2}$	$\Pr(A \cap B) = \frac{3}{36} = \frac{1}{12}$
	30 12
$=\frac{2}{\pi}\left[\sin\frac{\pi}{2} - \sin 0\right]$	$\Pr(A \cap B) = \Pr(A) \times \Pr(B) = \frac{1}{12}$
$=\frac{2}{\pi}[1-0]=\frac{2}{\pi}=0.637$	Therefore, independent events.
$\begin{bmatrix} -\frac{\pi}{\pi} L^{1-0} \end{bmatrix} - \frac{\pi}{\pi} - 0.057$	$\Pr(A \cup B)$
	$= \Pr(A) + \Pr(B) - \Pr(A \cap B)$
	$=\frac{1}{6}+\frac{1}{2}-\frac{1}{12}=\frac{7}{12}$
	-
	Therefore, not mutually exclusive.

Question 21 A Use a graphics calculator. Enter data in the list menu.	Question 22 D Pr(B GG)
Use binompdf to get probabilities. Then use graph to	$\Pr(B \cap GG)$
get A.	$= \frac{1}{\Pr(B \cap GG) + \Pr(Y \cap GG)}$
	$\frac{3}{2} \times \frac{2}{2}$
	$= \frac{\overline{6}^{5}}{\frac{3}{6} \times \frac{2}{5} + \frac{2}{6} \times \frac{1}{5}}$
	= 0.75


Suggested Solutions Part II

Question 1

Question 1	1
a.	b.
$f(x) = \frac{x^2}{1+x^2}$	 Graph is reflected in the X axis. Graph is translated 2 units to the left parallel
$f'(x) = \frac{(1+x^2)1 - x \times 2x}{(1+x^2)^2}$	 to the X axis. Graph is translated 3 units up parallel to the Y axis.
	1 wild.
$=\frac{1+x^2-2x^2}{(1+x^2)^2}$	(1 mark for each)
$=\frac{1-x^2}{(1+x^2)^2}=0$ for turning point (1 mark)	
$\Rightarrow 1 - x^2 = 0$	
$\Rightarrow x = \pm 1 (1 \text{ mark})$	
When $x = 1$, $f(x) = \frac{1}{2}$	
When $x = -1$, $f(x) = \frac{1}{2}$	
When $x < -1$, $f'(x) < 0$	
When $-1 < x < 1$, $f'(x) > 0$	
When $x > 1$, $f'(x) < 0$	
Maximum $\left(1,\frac{1}{2}\right)$ Minimum $\left(-1,\frac{1}{2}\right)$ (1 mark)	

Page 7

Question 1 (continued)

Page 8

Question 2

a.	b.
Maximum value of $\sin\left(\frac{2\pi t}{3}\right) = 1$	Minimum value of $\sin\left(\frac{2\pi t}{3}\right) = -1$
Max length of spring = $(a + b)$ cm (1 mark)	Min length of spring = $(a - b)$ cm (1 mark)
c. $8 \sin\left(\frac{2\pi t}{3}\right) = 4$ $\Rightarrow \sin\left(\frac{2\pi t}{3}\right) = \frac{1}{2} (1 \text{ mark})$ $\Rightarrow \frac{2\pi t}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6} (1 \text{ mark})$ $\Rightarrow t = \frac{\pi}{6} \times \frac{3}{2\pi}, \frac{5\pi}{6} \times \frac{3}{2\pi}, \frac{13\pi}{6} \times \frac{3}{2\pi}, \frac{17\pi}{6} \times \frac{3}{2\pi}$ $\Rightarrow t = \frac{1}{4}, 1\frac{1}{4}, 3\frac{1}{4}, 4\frac{1}{4} (1 \text{ mark})$	d. Period = $2\pi \div \frac{2\pi}{3} = 3$ seconds (1 mark)
e. $64 + 8\sin\left(\frac{2\pi t}{3}\right) > 60$ This is true when $8\sin\left(\frac{2\pi t}{3}\right) > -4 \Rightarrow \sin\left(\frac{2\pi t}{3}\right) > -\frac{1}{2}$ Let $\sin\left(\frac{2\pi t}{3}\right) = \frac{1}{2}$ $\Rightarrow \frac{2\pi t}{3} = \pi + \frac{\pi}{6}, 2\pi - \frac{\pi}{6} = \frac{7\pi}{6}, \frac{11\pi}{6}$ $\Rightarrow t = \frac{7\pi}{6} \times \frac{3}{2\pi}, \frac{11\pi}{6} \times \frac{3}{2\pi}$ $\Rightarrow t = \frac{7}{4}, \frac{11}{4} (1 \text{ mark})$ $64 + 8\sin\left(\frac{2\pi t}{3}\right) > 60 \text{ from 0 to } 1.75 \text{ seconds.}$ Between 1.75 seconds and 2.75 seconds, the function is less than 60.	f. When $t = 0$, length $(x) = 64$ When $t = 0.25$, length $(x) = 68$ (1 mark) Average rate of change $= \frac{\Delta x}{\Delta t} = \frac{4}{0.25} = 16 \text{ cm/sec} \qquad (1 \text{ mark})$
$\frac{\mathbf{g}}{\frac{dx}{dt}} = \frac{16\pi}{3} \cos\left(\frac{2\pi t}{3}\right) (1 \text{ mark})$ When $t = 2.75$, $\frac{dx}{dt} = \frac{16\pi}{3} \cos\left(\frac{2\pi \times 2.75}{3}\right) = \frac{8\pi\sqrt{3}}{3}$	$\frac{3}{2}$ cm/sec (1 mark)

Page 9

Question 3

a. b. Diameter = distance from -10 to +10 = 20 $y = a(x-b)^2 + c$ (b = 0) $v = ax^2 + c$ (1 mark)When x = 0, y = 1 so $y = ax^{2} + 1$ (1 mark) When x = -3, y = 3.25 so 3.25 = 9a + 1 $\Rightarrow 2.25 = 9a$ $\Rightarrow \frac{2.25}{9} = a$ $\Rightarrow a = 0.25$ (1 mark) c. d. Express x in terms of y. $\int 4\pi (y-1)dy \quad (1 \text{ mark})$ $y = \frac{x^2}{4} + 1$ a and b are the y values. $\Rightarrow y-1=\frac{x^2}{4}$ a = 1 (1 mark) b is the value of v when x = 10 (1 mark) $\Rightarrow x^2 = 4(y-1)$ When $x = 10, y = \frac{1}{4} \times 100 + 1 = 26$ $\Rightarrow x = \pm \sqrt{4(y-1)}$ (1 mark) $\Rightarrow b = 26$ $V = 4\pi \left[\frac{y^2}{2} - y\right]_{1}^{26} = 3927$ cubic units (1 mark) f. e. $r = 3 \Longrightarrow x = 3$ $\frac{dy}{dr} = \frac{1}{9} \left[e^{3x} \times 3 + (3x+2) \times 3e^{3x} \right] \quad (1 \text{ mark})$ When x = 3, $y = \frac{1}{4} \times 9 + 1 = \frac{13}{4}$ $=\frac{1}{3}e^{3x}\times\left[1+3x+2\right]$ $V = 4\pi \int_{1}^{13/4} (y-1)dy$ (1 mark) $=\frac{1}{2}e^{3x}\times[3x+3]$ $V = 4\pi \left[\frac{y^2}{2} - y\right]^{13/4}$ $=e^{3x}(x+1)$ (1 mark) $V = 4\pi \left[\frac{169}{32} - \frac{13}{4} - \frac{1}{2} + 1 \right]$ $V = 4\pi \times \frac{81}{32} = \frac{81\pi}{8}$ cubic units (1 mark)

2006 Mathematical Methods Trial Examination 2 Suggested Solutions Part II Question 3 (continued)

g. i.	g. ii.
dh dh dh dh dh dh dh dh	$\frac{dV}{dV} = \frac{dV}{dh} \frac{dh}{dh}$
$\frac{dh}{dt} = 4te^{3t} \Longrightarrow h = \int_{a}^{1} 4te^{3t} dt$	$\frac{dt}{dt} = \frac{dh}{dt} \frac{dt}{dt}$
0	h = y
Now $\int te^{3t} + \int e^{3t} = \frac{1}{9}e^{3t}(3t+2) + c$ (1 mark)	$\frac{dV}{dt} = \frac{dV}{dy}\frac{dy}{dt}$
	dt dy dt
$\int te^{3t} = \frac{1}{9}e^{3t}(3t+2) - \frac{1}{3}e^{3t} + c$	$\frac{dV}{dy} = 4\pi(y-1) (1 \text{ mark})$
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	
$h = 4 \int_{0}^{1} t e^{3t} dt = 4 \left \frac{1}{9} e^{3t} (3t+2) - \frac{1}{3} e^{3t} \right _{0}^{1} (1 \text{ mark})$	$\frac{dh}{dt} = \frac{dy}{dt} = 4te^{3t} = 4e^3 \text{ when } t = 1$
	dt dt
$h = 4 \left[\frac{5}{9}e^3 - \frac{1}{3}e^3 - \frac{2}{9} + \frac{1}{3} \right]$	$\frac{dV}{dt} = 4\pi (18.2983 - 1) \times 4e^3$
h = 18.2983 units (1 mark)	= 17464.52 cubic units/time unit (1 mark)
	-1/404.52 cubic units/time unit (1 mark)

Question 4

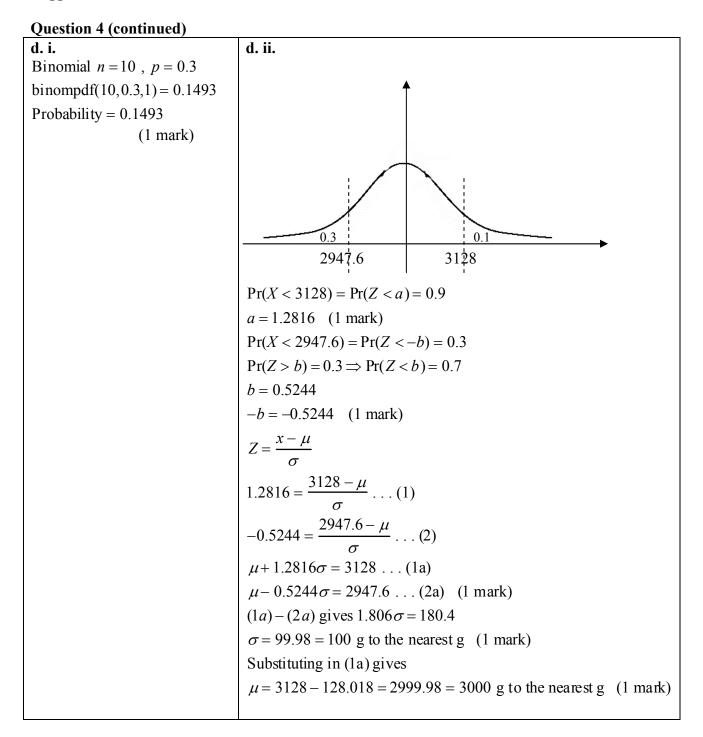
a. i.	a. ii.
$E(X) = \sum x \Pr(X = x)$	$\sigma^2 = E(X^2) - \mu^2$
= 0 + 0.01 + 0.1 + 0.6 + 1.6 + 1.5	$E(X^2) = 0.01 + 0.2 + 1.8 + 6.4 + 7.5$
= 3.81 (1 mark)	= 15.91 (1 mark)
	$\sigma^2 = 15.91 - (3.81)^2$
	$\sigma = \sqrt{15.91 - (3.81)^2} = 1.18$ (1 mark)
b. i.	b. ii. Probability(will not flower in 2008) 2006 2007 2008
1 - 0.85 = 0.15 (1 mark)	F F $F' = 0.8 \times 0.8 \times 0.2$
	F $F' = 0.8 \times 0.2 \times 0.85$
	$\begin{array}{ccccc} F' & F' & F' & = & 0.2 \times 0.15 \times 0.2 \\ F' & F & F' & = & 0.2 \times 0.85 \times 0.85 \end{array}$
	F' F F' = $0.2 \times 0.85 \times 0.85$ (1 mark)
	= 0.128 + 0.136 + 0.006 + 0.1445
	= 0.4145 (1 mark)
c. i.	c. ii.
$a\int_{0}^{1} (t^{2} - t^{3})dt = 1$	$12\int_{0}^{0.23} (t^2 - t^3) dt$
$\Rightarrow a \left[\frac{t^3}{3} - \frac{t^4}{4} \right]_0^1 = 1$	$12\int_{0}^{0.25} (t^2 - t^3) dt$ $= 12\left[\frac{t^3}{3} - \frac{t^4}{4}\right]_{0}^{0.25}$
$\Rightarrow a\left(\frac{1}{3} - \frac{1}{4}\right) = 1$	= 0.05 (1 mark)
$\Rightarrow \frac{a}{12} = 1 \Rightarrow a = 12 (1 \text{ mark})$	

Page 10

Question 4 (continued)

c. iii.

$$Pr(X \le 3) | Pr(X \le 6) = \frac{Pr(X \le 3) \cap Pr(X \le 6)}{Pr(X \le 6)}$$


$$= \frac{Pr(X \le 3)}{Pr(X \le 6)}$$

$$Pr(X \le 6) = 12 \left[\frac{t^3}{3} - \frac{t^4}{4} \right]_0^{0.5} = 0.3125 \quad (1 \text{ mark})$$

$$Pr(X \le 3) | Pr(X \le 6) = \frac{0.05078125}{0.3125}$$

$$= 0.1625$$

$$= 0.16 \text{ to 2 decimal places} \quad (1 \text{ mark})$$

END OF SUGGESTED SOLUTIONS 2006 Mathematical Methods Trial Examination 2

KILBAHA MULTIMEDIA PUBLISHING	TEL: (03) 9817 5374
PO BOX 2227	FAX: (03) 9817 4334
KEW VIC 3101	chemas@chemas.com
AUSTRALIA	www.chemas.com