Mathematical Methods

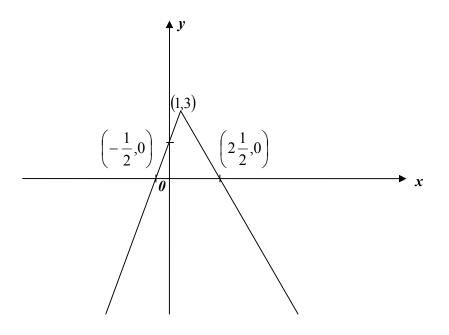
Written examination 1

2006 Trial Examination

SOLUTIONS

Question 1

Vertex (1, 3) and correct shape for graph	A1
(0, 1) <i>y</i> -intercept marked in or stated	A1
x-intercepts $\left(-\frac{1}{2},0\right)$ and $\left(2\frac{1}{2},0\right)$ (both marked in or stated)	A1



Question 2

a. Inverse has equation $x + 1 = \frac{3}{y+2}$ M1

So
$$y = \frac{3}{x+1} - 2$$
 A1

b. Domain of this is x < -1.

Question 3

a.
$$f'(x) = -8e^{-2x}\cos 5x - 20e^{-2x}\sin 5x$$
 M1 product rule and some correct derivatives, A1

b.
$$f(x) = \frac{2}{3}(x-3)^{\frac{3}{2}} + c$$
 A1

$$f(4) = 1 \Longrightarrow 1 = \frac{2}{3} + c \Longrightarrow c = \frac{1}{3}$$
 A1

Question 4

$$\cos x = -\frac{1}{2}\sqrt{3}$$
. Second or third quadrant, related angle $\frac{\pi}{6}$. M1
 $x = \pm \frac{5\pi}{6}$. A1 + A1

Question 5

a.
$$f'(x) = \frac{x \times \frac{3}{3x} - \ln(3x)}{x^2} = \frac{1 - \ln(3x)}{x^2}$$
 M1 (quotient rule) + A1
b. Turning point at $\ln(3x) = 1$ so $3x = e, x = \frac{1}{3}e$ M1 (must involve a log equation)
 $f\left(\frac{1}{3}e\right) = \frac{3}{e}$, so co ordinates are $\left(\frac{1}{3}e, \frac{3}{e}\right)$. A1

Question 6

a.
$$x = 200 - \frac{1}{2} of \ 30 = 185$$
. A1

b. By symmetry, k is the Z value corresponding to the X value 240 = 200 + 40, which is $1\frac{1}{3}$ standard deviation's above the mean, so Z is $1\frac{1}{3}$.

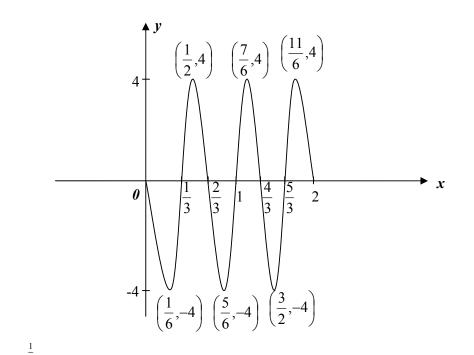
A1

Question 7

a. Period
$$\frac{2}{3}$$
, amplitude 4. A1

b. Correct axial scales and placement of graph on their scale A1

Correct turning point coordinates and shape of graph



c. Area =
$$-\int_{0}^{3} 4\sin 3\pi x \, dx$$
 (or equivalent)
= $\frac{4}{3\pi} [\cos 3\pi x]_{0}^{\frac{1}{3}}$ The indefinite integral must be shown! A1
= $\frac{4}{3\pi}$

Question 8

a.
$$\int_{-\infty}^{\infty} f(x) dx = 1 = \int_{0}^{4} k(4x - x^2) dx$$
 M1

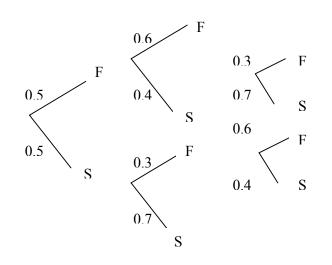
$$= k \left[2x^{2} - \frac{x^{3}}{3} \right]_{0}^{4}$$
 H1

$$= \frac{32k}{3}$$
 thus $k = \frac{3}{32}$ A1

b.
$$\mu = \int_{-\infty}^{\infty} x f(x) dx = \frac{3}{32} \int_{0}^{4} (4x^2 - x^3) dx$$
 H1

$$= \frac{3}{32} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_0^4 = 2$$
 A1

A1



M1 correct format of tree and attempt at probabilities

b.
$$Pr(S \text{ wins}) = 0.5 \times 0.7 + 0.5 \times 0.4 \times 0.7 + 0.5 \times 0.3 \times 0.4$$
 H1

c. Pr(3 games | S wins) =
$$\frac{(0.5 \times 0.4 \times 0.7 + 0.5 \times 0.3 \times 0.4)}{0.55} = \frac{4}{11}$$
 A1

Question 10

a.
$$f(g(x)) = 5\sin^3 x$$
. A1

b.
$$\frac{d}{dx}[f(g(x))] = 15\sin^2 x \cos x.$$
 A1

Question 11

Gradients of both curves must be equal. This is so if $-3x^2 + 4 = -2$ M1

Thus
$$x^2 = 2, x = \pm \sqrt{2}$$
. A1

If
$$x = \pm \sqrt{2}$$
 in the formula $y = -x^3 + 4x$, $y = \pm 2\sqrt{2}$. A1

Tangent
$$y = -2x + c$$
 goes through $(\sqrt{2}, 2\sqrt{2})$ if $c = 4\sqrt{2}$. M1

Other value of c (by symmetry or other) is $c = -4\sqrt{2}$. A1