
_____________________________________________________________________ 
©THE HEFFERNAN GROUP 2007                   Maths Methods 3 & 4 Trial Exam 1 solutions 

 

                                                                MATHS METHODS 3 & 4 

                                                       TRIAL EXAMINATION 1 

                                                                    SOLUTIONS 

                                                                           2007 

 
 
 

Question 1 

 

The function ( ) ( )2log −= xxf e  is defined for  

  
x −2 > 0

x > 2
 

So ( )∞= ,2fd  

(1 mark) 

 

 

Question 2 

 

a. ( )( )xgf  exists iff rg ⊆ d f . 

Now, { }0\ and RdRr fg == . 

{ }
fg dr

RR

⊄

⊄ ,0\ Since
 

so ( )( )xgf  does not exist. 

(1 mark) 

 

b. i. 
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(1 mark) 

 

 ii. 
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(1 mark) 
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Question 3 

 

a. ( ) ( ) 2
1

3
 ,,1: +

−
=→∞
x

xfRf  

Let y =
3

x −1
+2  

Swap x and y 
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(1 mark) 

 

 

b. ff
rd =−1  

Do a quick sketch of y =
3

x −1
+2  
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(1 mark) 
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Question 4 

 

a. ( ) ( )xexf 2sin=  

( )
( )

( )

( )
( )xx

x

x
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dx

du

du

dy

dx

dy
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du
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ey

22
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=

⋅
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(1 mark) – for knowing to use the chain rule 

 and attempting to use it 

(1 mark) – correct answer 

 

b. 

( )

( ) ( ) ( )
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( )23
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(1 mark) – for knowing to use the quotient rule 

 and attempting to use it 

(1 mark) – correct answer 
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Question 5 

 

For 














 −=
3

2sin2
π

xy  the period is 
2π
2

= π    (1 mark) correct period 

This means that for [ ]ππ ,−∈x  there will be two complete periods of the graph. 

 

x-intercepts  

 

Method 1 

The graph is a sine graph with a period of π  that has been translated 
3

π
 units to the right so 

that the x-intercepts will occur at 







0,

3

π
, at 
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+− 0,
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0,
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3

2
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3
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π . (1 mark) for x- intercepts 

 

Method 2 

The x- intercepts occurs when 0=y . 
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(1 mark) for x- intercepts 

y - intercept  )0( =x  

y = 2sin 2 0−
π
3

 

 
 

 

 
 

 

 
 

 

 
 

= 2sin −
2π
3

 

 
 

 

 
 

= 2× −sin
π
3

 

 
 

 

 
 

= 2× −
3
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= − 3

      Angle measured clockwise because it is negative. 

y-intercept occurs at ( )3,0 −        (1 mark) 
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To find the endpoints: 

 

Method 1 

Because two complete periods occur for [ ]ππ ,−∈x  the right endpoint and left endpoint will 

have the same y-coordinate and it will be the same as the y-intercept. 

So left endpoint is ( )3,−− π  and the right endpoint is ( )3,−π . 

                (1 mark) 
 

Method 2 
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          3−=  

Left endpoint is ( )3,−− π .     Right endpoint is ( )3,−π . 

(1 mark) 

 

 

The graph of 














 −=
3

2sin2
π

xy  is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark)  correct shape including amplitude 
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Question 6 

 

a.  
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Question 7 

 

a. Since ( )xf  represents a probability density function then 

                ( )∫ =+
3

1

11 dxax  
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(1 mark) 
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(1 mark) 
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(1 mark) 
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Question 8 

 

a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that at the points ( ) ( ) ( )5,0 and 0,3,0,1  the graph of ( )xfy =  has cusps; i.e. 

“pointy bits” not smooth curves since the graph of ( )xfy =  is being reflected in the 

x-axis. 

(1 mark) 

 

 

b. ( ) ( )∫ ∫−=
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dxxfdxxfA  

 (1 mark) 
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Question 9 

 
a. 

( ) ( )
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10

2

2

5
1

2

1

5
1  where
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2

1

heightbase
2

1
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b.  

 

 

 

(1 mark) 

Maximum occurs when 
dA

da
= 0  

1

2
−
a

5
= 0

a

5
=
1

2

2a = 5

a =
5

2

 

Note: we know we have a maximum because the graph of the function 
102

2aa
A −=  is 

an inverted parabola. 

We have a maximum when 
2

5
=a .         (1 mark) 

 

units square 
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Question 10 

 

y = 3x
2 + a

dy

dx
= 6x

 

The gradient of a normal to 
x

axy
6

1
 is 3 2 −+= . 

(1 mark) 

Also the gradient of the normal y =
x

3
+1 is 

1

3
. 

2

1

63

3

1

6

1
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−=

=−

=−

x

x

x

 

(1 mark) 

The x-coordinate of the point where the normal hits the curve is −
1

2
. 

So y = −
1

2
÷ 3+1

= −
1

2
×
1

3
+1

= −
1

6
+1

=
5

6

 

The curve and the normal both pass through the point −
1

2
, 
5

6

 

 
 

 

 
 . 

Substituting this point into 

(1 mark) 
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Question 11 

 

a.          y = e2x

y = 6−ex
 

At the point of intersection of the graphs, 

( )( ) 023
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      Let       
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6

2

2

2
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mm
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m = −3 or m = 2  

( )2log                             solution   no

2       or                  3   So

e

xx

x

ee

=

=−=
 

The x-coordinate of the point of intersection is ( )2log e . 

     (1 mark) 
 

b. a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) 

 

Total 40 marks 
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