

P.O. Box 1180 Surrey Hills North VIC 3127 ABN 47 122 161 282 Phone 9836 5021 Fax 9836 5025

MATHS METHODS 3 & 4 TRIAL EXAMINATION 2 SOLUTIONS 2007

1. D	9. D	17. B	
2. B	10. C	18. C	
3. C	11. E	19. C	
4. C	12. B	20. E	
5. D	13. D	21. D	
6. B	14. A	22. E	
7. E	15. A		
8. A	16. E		

Section 1 – Multiple-choice solutions

Question 1

For $f(x) = \frac{2}{\sqrt{4x-3}}$, the maximal domain is given by 4x-3>0 4x>3 $x > \frac{3}{4}$ The answer is D.

Question 2

$$f(x) = 3\cos\left(2x + \frac{\pi}{2}\right) + 1$$
$$= 3\cos\left(2\left(x + \frac{\pi}{4}\right)\right) + 1$$

The period is $\frac{2\pi}{2} = \pi$ and the amplitude is 3. The answer is B.

$$4\sin(2x) - 2\sqrt{3} = 0 \qquad 0 \le x \le 2\pi$$

$$4\sin(2x) = 2\sqrt{3} \qquad 0 \le 2x \le 4\pi$$

$$\sin(2x) = \frac{\sqrt{3}}{2}$$

$$2x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}, \frac{8\pi}{3}$$

$$x = \frac{\pi}{6}, \frac{2\pi}{6}, \frac{7\pi}{6}, \frac{8\pi}{6}$$

$$S | A | T | C$$

The sum is $\frac{18\pi}{6}$ or 3π . The answer is C.

Question 4

Draw a quick tree diagram.

There are 8 possible outcomes, 1 of those is to get 3 heads, 3 of those are to get 2 heads, 3 of those are to get 1 head, and 1 of those is to get 0 heads. The answer is C.

Sketch the graph of y = x - 1.

For the function f, $r_f = [-1,5]$. Looking at the graph when y = -1, x = 0. (Check y = x - 1, -1 = 0 - 1). Again looking at the graph when y = 5, x = 6. (Check y = x - 1, 5 = 6 - 1). So the domain of f = [0, 6]The answer is D.

Question 6

A translation of 2 units to the left changes the rule $y = 1 - e^x$ to become $y = 1 - e^{(x+2)}$. A reflection in the y-axis changes the rule to $y = 1 - e^{(-x+2)}$ The answer is B.

Question 7

g(f(x)) exists if $r_f \subseteq d_g$. Now $d_g = [0, \infty)$. So we require that $r_f \subseteq [0, \infty)$. For option **A.** $r_f = R$. For option **B.** $r_f = R$. For option **C.** $r_f = R$. For option **D.** $r_f = [-1, \infty)$. For option **E.** $r_f = [0, \infty)$. The answer is E.

Let $y = 2e^{-x} + 1$ Swap x and y $x = 2e^{-y} + 1$ $x - 1 = 2e^{-y}$ $\frac{x - 1}{2} = e^{-y}$ $\log_e\left(\frac{x - 1}{2}\right) = -y$ $y = -\log_e\frac{(x - 1)}{2}$ So $f^{-1}(x) = -\log_e\frac{(x - 1)}{2}$

The answer is A.

Question 9

Method 1

$\left 3p-2\right = p+1$	
3p - 2 = p + 1	if $3p - 2 > 0$
2p = 3	3p > 2
$p=\frac{3}{2}$	$p > \frac{2}{3}$
(2n 2) = n + 1	

$$-(3p-2) = p+1 if 3p-2 < 0
-3p+2 = p+1 3p < 2
-4p = -1 p < \frac{2}{3}$$

The answer is D.

Method 2

Sketch $y_1 = abs(3x - 2)$ and $y_2 = x + 1$. Points of intersection occur at $x = \frac{1}{4}$ and at $x = \frac{3}{2}$, so, $p = \frac{1}{4}$ or $p = \frac{3}{2}$. The answer is D.

Question 10

 $y = e^{-x} \sin(3x)$ = $-e^{-x} \sin(3x) + e^{-x} \times 3\cos(3x)$ = $e^{-x} (3\cos(3x) - \sin(3x))$ The answer is C.

$$\underbrace{\text{Method } 1}_{y = \sqrt{x + 2x^2}} & \underbrace{\text{Method}}_{z = (x + 2x^2)^{\frac{1}{2}}} & \text{Sketch} \\ = (x + 2x^2)^{\frac{1}{2}} & \text{Calcula} \\ = u^{\frac{1}{2}} & \text{where } u = x + 2x^2 & \text{Calcula} \\ = u^{\frac{1}{2}} & \underbrace{\frac{dy}{du}}_{dx} = 1 + 4x & \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} & \text{(chain rule)} & \text{The an} \\ = \frac{1}{2}u^{-\frac{1}{2}}(1 + 4x) & \text{If an } \\ = \frac{1}{2} \cdot \frac{1}{\sqrt{u}}(1 + 4x) & \text{If an } \\ = \frac{1 + 4x}{2\sqrt{x + 2x^2}} & \text{At} \quad x = 1 & \frac{dy}{dx} = \frac{5}{2\sqrt{3}} & \text{The answer is E.} \\ \end{aligned}$$

Method 2
Sketch
$$y = (x + 2x^2)^{\frac{1}{2}}$$
.
Calculate $\frac{dy}{dx}$ when $x = 1$.
 $\frac{dy}{dx} = 1.4433757$
 $= \frac{5}{2\sqrt{3}}$

The answer is E.

Question 12

Let *v* equal the volume of the cylinder.

$$v = \pi r^{2} h$$

since $r = 5$
 $v = 25\pi h$
 $\frac{dv}{dh} = 25\pi$
Also $\frac{dh}{dt} = \frac{1}{t}$

We are required to find $\frac{dv}{dt}$ when t = 10.

So
$$\frac{dv}{dt} = \frac{dv}{dh} \cdot \frac{dh}{dt}$$
 (Chain rule)
= $25\pi \times \frac{1}{t}$
When $t = 10, \ \frac{dv}{dt} = 2.5\pi$

The answer is B.

f(x) is positive for $x < -2 \cup x > 2$. f'(x) is the gradient of f(x) and is positive for x > 0. So f(x) and f'(x) are both positive for x > 2. The answer is D.

Question 14

Let the antiderivative function of *f* be called *g*. So g'(x) = f(x). For $x \in (-a, a)$, f(x) > 0 so the graph of *g* will have a positive gradient. Note that for there to be a stationary point (which may be a local min/max or point of inflection) f(x) = 0. For $x \in (-a, a)$, $f(x) \neq 0$. The answer is A.

Question 15

$$\int (2x-1)^6 dx = \frac{1}{2 \times 7} (2x-1)^7 + c$$
$$= \frac{1}{14} (2x-1)^7 + c$$
The ensure is A

The answer is A.

Question 16

$$h'(x) = 2x - 3g'(x)$$

$$\int h'(x)dx = \int 2xdx - 3\int g'(x)dx$$

$$h(x) = x^2 - 3g(x) + c$$
Now $h(2) = 4$ and $g(2) = 3$
So when $x = 2$,

$$4 = 4 - 9 + c$$

$$c = 9$$
So $h(x) = x^2 - 3g(x) + 9$
The answer is E.

Sketch the graph.

Area
$$= -\int_{0}^{\pi} -\sin(x)dx + \int_{\pi}^{2\pi} -\sin(x)dx$$

 $= 2\int_{0}^{\pi} \sin(x)dx$ because of the symmetry of the sine curve

The answer is B.

Question 18

$$2 \log_{2}(3) - \log_{2}(6)$$

= $\log_{2}(3^{2}) - \log_{2}(6)$
= $\log_{2}\left(\frac{9}{6}\right)$
= $\log_{2}(1.5)$
= $\frac{\log_{10}(1.5)}{\log_{10}(2)}$ OR $\frac{\log_{e}(1.5)}{\log_{e}(2)}$ (change of base rule)
= 0.5850 (to 4 dec. places) = 0.5850 (to 4 dec. places)
The answer is C.

The shaded area is given by normalcdf(39, 100, 42,2) = 0.93319...

= 93% to the nearest percent (Alternatively, normalcdf(-1.5,100,0,1) = 0.93319...) The answer is C.

Question 20

This represents a binomial distribution because there is a fixed probability of an event happening i.e. 0.78 and there is a fixed number of "trials" i.e. 4 and we want a particular number of events to occur i.e. 3 or 4. Method 1

Pr(3 goals) + Pr(4 goals)= ${}^{4}C_{3}(0 \cdot 78)^{3}(0 \cdot 22)^{1} + {}^{4}C_{4}(0 \cdot 78)^{4}(0 \cdot 22)^{0}$ = $0 \cdot 7878$

The answer is E.

Method 2

binompdf(4,0.78,3) + binompdf(4,0.78,4) = 0.7878

The answer is E.

Question 21

The mode is the value of x for which the maximum value of f occurs.

Now, $y = \frac{3}{4} (1 - (x - 1)^2)$ for $0 \le x \le 2$, describes the graph of an inverted parabola with a maximum turning point at $(1, \frac{3}{4})$. So the maximum value of *f* is $\frac{3}{4}$ and it occurs at x = 1.

The mode (that is the most popular value) is 1.

The answer is D.

The graph of y = f(x) could be

Both of these graphs produce the graph of y = |f(x)|. The equation of the first could be $y = (x - 2)^2 (x - 5)$. This is option E. The equation of the second could be $y = -(x - 2)^2 (x - 5)$. This is not offered. The answer is E.

SECTION 2

Question 1

a.

 $y = 6x^{2} \log_{e}(2x)$ x-intercept occurs when y = 0 $0 = 6x^{2} \log_{e}(2x)$ Either $6x^{2} = 0$ x = 0 but we reject this since $d_{f} = (0, \infty)$ or $\log_{e}(2x) = 0$ $e^{0} = 2x$ 2x = 1 $x = \frac{1}{2}$ The x-intercept occurs at $(\frac{1}{2}, 0)$ as required

(1 mark)

b. The function $f(x) = 6x^2 \log_e(2x)$ is only defined for values of x such that 2x > 0; that is, for x > 0 because $\log_e(2x)$ is only defined for these values.

(1 mark)

c. Use a graphics calculator to locate the turning point. It is the point $(0 \cdot 3, -0 \cdot 3)$ where each coordinate is correct to one decimal place.

(1 mark)

- **d.** From part **c.** the range is $[-0.2759...,\infty)$ or $[-0.3,\infty)$ correct to one decimal place. (1 mark)
- e. i. The function f does not have an inverse function because it is not a 1:1 function.

(1 mark)

ii. The function g must be a 1:1 function since g^{-1} exists. The maximal domain of g is therefore $[0 \cdot 3032...,\infty)$ where the value of a is the x-coordinate of the turning point of the curve. The answer is $a = 0 \cdot 3$ where a is correct to one decimal place.

(1 mark)

f.

i.

Approximate area using right rectangles method $= 0 \cdot 25 \times f(0 \cdot 75) + 0 \cdot 25 \times f(1)$ $= 1 \cdot 3818...$ (1 mark) $= 1 \cdot 38$ square units (correct to 2 decimal places)

ii. Since the right rectangles extend above the function f the approximation will be greater than the exact area.

$$y = x^{3} \log_{e}(2x)$$

$$\frac{dy}{dx} = 3x^{2} \log_{e}(2x) + x^{3} \times \frac{2}{2x}$$
(product rule)
$$= 3x^{2} \log_{e}(2x) + x^{2}$$
So $a = 3$ and $b = 1$
(1 mark)

(1 mark)

(1 mark)

Hence means use what you have already found. From part i., we found that $\frac{d}{dx}(x^3 \log_e(2x)) = 3x^2 \log_e(2x) + x^2$ If we antidifferentiate each term on both sides, we obtain $x^3 \log_e(2x) + c_1 = \int 3x^2 \log_e(2x) dx + \int x^2 dx$ where c_1 is a constant. Rearranging, we obtain $\int 3x^2 \log_e(2x) dx = x^3 \log_e(2x) + c_1 - \int x^2 dx$ $= x^3 \log_e(2x) - \frac{x^3}{3} + c$ (1 mark) (Note that c = the sum of c_1 and the constant that arose from $\int x^2 dx$.)

So
$$\int 6x^2 \log_e(2x) dx = 2\left(x^3 \log_e(2x) - \frac{x^3}{3} + c\right)$$

= $2x^3 \log_e(2x) - \frac{2x^3}{3} + 2c$

©THE HEFFERNAN GROUP 2007

g.

i.

ii.

Now the exact area

$$= \int_{0.5}^{1} 6x^{2} \log_{e}(2x) dx$$
 (1 mark)
= $\left[2x^{3} \log_{e}(2x) - \frac{2x^{3}}{3} \right]_{0.5}^{1}$ (1 mark)
= $\left\{ \left(2\log_{e}(2) - \frac{2}{3} \right) - \left(\frac{1}{4} \log_{e}(1) - \frac{1}{12} \right) \right\}$
= $2\log_{e}(2) - \frac{2}{3} + \frac{1}{12}$
= $2\log_{e}(2) - \frac{7}{12}$ square units

(Note – if you have time, check your answer using a calculator:

(1 mark)

 $\int_{0.5}^{1} 6x^2 \log_e(2x) dx = 0.80296...$ and $2 \log_e(2) - \frac{7}{12} = 0.80296...)$

Total 15 marks

- **a. i.** The probability that Sealord's provides the seafood on Thursday, Friday and Saturday given that it supplied it on Wednesday is $0 \cdot 7 \times 0 \cdot 7 \times 0 \cdot 7 = 0 \cdot 343$. (1 mark)
 - ii. Draw a tree diagram to see all the possible outcomes.

(1 mark)

Looking at the possible outcomes the probability that Sealord's supplies on at least two of the next three nights = Pr(SSS) + Pr(SSK) + Pr(SKS) + Pr(KSS) (1 mark) = $(0 \cdot 7 \times 0 \cdot 7 \times 0 \cdot 7) + (0 \cdot 7 \times 0 \cdot 7 \times 0 \cdot 3) + (0 \cdot 7 \times 0 \cdot 3 \times 0 \cdot 6) + (0 \cdot 3 \times 0 \cdot 6 \times 0 \cdot 7)$ = $0 \cdot 343 + 0 \cdot 147 + 0 \cdot 126 + 0 \cdot 126$ = $0 \cdot 742$

(1 mark)

iii. From the tree diagram, the probability that the first time Kingfisher supplies the restaurant is on Saturday or on Sunday. = Pr(SSK) + Pr(SSSK) (extend the tree by 1 more branch) = $(0 \cdot 7 \times 0 \cdot 7 \times 0 \cdot 3) + (0 \cdot 7 \times 0 \cdot 7 \times 0 \cdot 7 \times 0 \cdot 3)$ = $0 \cdot 147 + 0 \cdot 1029$ = $0 \cdot 2499$ (1 mark)

b. Pr(Marco spends more than 5 hours in the kitchen on a particular night)

$$= -\frac{6}{125} \int_{5}^{6} (t-1)(t-6)dt$$
 (1 mark)
= 0.104

(1 mark)

c. This is a binomial distribution with p = 0.104 (from part **b.**), n = 4 and x = 3. Method 1

Required probability= ${}^{n}C_{x}p^{x}q^{n-x}$

$$={}^{4}C_{3}(0.104)^{3}(0.896)^{1}$$

= 0.00403...
= 0.004 (correct to 3 decimal places)

Method 2

Using a calculator, binompdf(4,0.104,3) = 0.004 (correct to 3 decimal places)

d. <u>Method 1</u> Sketching the graph.

(1 mark)

We have an inverted parabola with its axis of symmetry located at $t = 3 \cdot 5$. So the median time spent in the kitchen on a night by Marco is 3.5 hours since the area under the graph for $t < 3 \cdot 5$ is equal to the area under the graph for $t > 3 \cdot 5$.

(1 mark)

 $\frac{\text{Method } 2}{\text{Let } m \text{ be the median.}}$ We require that

$$\int_{1}^{m} f(t)dt = 0 \cdot 5$$
$$-\frac{6}{125}\int_{1}^{m} (t-1)(t-6)dt = 0 \cdot 5$$

(1 mark)

Use your calculator and a trial and error method to find the upper limit *m*. It is 3.5.

(1 mark)

 $\frac{\text{Method } 3}{\text{Let } m \text{ be the median.}}$ We require that

$$\int_{1}^{m} f(t)dt = 0.5$$

$$-\frac{6}{125}\int_{1}^{m} ((t-1)(t-6))dt = 0.5$$

$$-\frac{6}{125}\int_{1}^{m} (t^{2} - 7t + 6)dt = 0.5$$

$$-\frac{6}{125}\left[\frac{t^{3}}{3} - \frac{7t^{2}}{2} + 6t\right]_{1}^{m} = 0.5$$

$$-\frac{6}{125}\left\{\left(\frac{m^{3}}{3} - \frac{7m^{2}}{2} + 6m\right) - \left(\frac{1}{3} - \frac{7}{2} + 6\right)\right\} = 0.5$$

$$\frac{m^{3}}{3} - \frac{7m^{2}}{2} + 6m - 2.8\dot{3} = -10.41\dot{6}$$

$$\frac{m^{3}}{3} - \frac{7m^{2}}{2} + 6m + 7.58\dot{3} = 0$$

$$x^{3} - 7x^{2}$$

Solve this by graphing $y = \frac{x^3}{3} - \frac{7x^2}{2} + 6x + 7.58\dot{3}$ and see where it intersected with y = 0, that is, the x - axis, between x = 1 and x = 6 using a graphics calculator. It intersects at x = 3.5So m = 3.5

(1 mark)

Total 12 marks

a. i. At point A,
$$x = 0$$
.
 $f(0) = \frac{1}{56} \{ (0-2)^3 (0+5) - 72 \}$
 $= -2$
A is the point $(0,-2)$.
ii. At point C, $y = 0$.
Use a graphics calculator to solve $0 = \frac{1}{56} \{ (x-2)^3 (x+5) - 72 \}$.
The answers are $x = -5 \cdot 1934$... and $x = 4$.
C is the point (4,0).
b. $|f(0)| = |-2|$ from part a.i.
 $= 2$
(1 mark)

c. <u>Method 1</u> – expanding then differentiating

$$f(x) = \frac{1}{56} \{ (x-2)^3 (x+5) - 72 \}$$

$$= \frac{1}{56} \{ (x^2 - 4x + 4)(x-2)(x+5) - 72 \}$$

$$= \frac{1}{56} \{ (x^2 - 4x + 4)(x^2 + 3x - 10) - 72 \}$$

$$= \frac{1}{56} (x^4 + 3x^3 - 10x^2 - 4x^3 - 12x^2 + 40x + 4x^2 + 12x - 40 - 72)$$

$$= \frac{1}{56} (x^4 - x^3 - 18x^2 + 52x - 112)$$
 (1 mark)

$$f'(x) = \frac{1}{56} (4x^3 - 3x^2 - 36x + 52)$$
 (1 mark)

<u>Method 2</u> – using the product rule

$$f(x) = \frac{1}{56} \{ (x-2)^3 (x+5) - 72 \}$$

$$f'(x) = \frac{1}{56} \{ (x-2)^3 \times 1 + 3(x-2)^2 (x+5) \}$$

$$= \frac{1}{56} \{ (x-2)^2 ((x-2) + 3(x+5)) \}$$

$$= \frac{1}{56} \{ (x-2)^2 (4x+13) \}$$

$$= \frac{1}{56} \{ (x^2 - 4x + 4)(4x + 13) \}$$

$$= \frac{1}{56} (4x^3 - 3x^2 - 36x + 52)$$
(1 mark)

d. i. At point *B*, f'(x) = 0.

<u>Method 1</u> – following on from Method 1 in part c.

$$f'(x) = \frac{1}{56} \left(4x^3 - 3x^2 - 36x + 52 \right) = 0$$

Use a graphics calculator to solve this. x = 2 is a solution that corresponds to *B*'s position.

Method 2 – following on from Method 2 in part **c**.

$$\frac{1}{56} \left\{ (x-2)^2 (4x+13) \right\} = 0$$

$$x = 2 \text{ or } x = -\frac{13}{4}, \text{ but } x > 0 \text{ so reject this.}$$

Now,

$$f(2) = \frac{1}{56}(0 - 72)$$
$$= -\frac{9}{7}$$

B is the point $\left(2, -\frac{9}{7}\right)$

(1 mark)

ii. *B* is a stationary point because at *B*, f'(x) = 0

At
$$x = 1$$
, $f'(x) = \frac{1}{56} (4 - 3 - 36 + 52)$

$$= \frac{17}{56}$$

$$> 0$$
At $x = 3$, $f'(x) = \frac{1}{56} (108 - 27 - 108 + 52)$

$$= \frac{25}{56}$$

$$> 0$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{3}$$

Since the gradient to either side of point *B* is positive but at point *B* the gradient is zero, there is a stationary point of inflection at *B*.

(1 mark) (1 mark) for first derivative test

e. Area of garden bed 4

$$= -\int_{0}^{1} f(x)dx \qquad (\text{negative because the area falls below the x-axis})$$
$$= -\frac{1}{56}\int_{0}^{4} (x^{4} - x^{3} - 18x^{2} + 52x - 112)dx$$

(1 mark) – correct terminals (1 mark) – correct function f. i. The Fulton's garden border is described by $y = \frac{1}{56} \{(x-2)^3(x+5) - 72\}$ so the George's garden border is described by $y = \frac{-1}{56} \{(x-2)^3(x+5) - 72\}$. (1 mark)

ii. Since C is the point (4,0) (from part **a. ii.**) $d_g = [0, 4]$.

g.

i.

(1 mark)

ii. The rule for the garden border in Fulton's garden is given by $y = \frac{1}{56} \{ (x-2)^3 (x+5) - 72 \}.$

When this function is reflected in the y-axis the rule becomes

$$y = \frac{1}{56} \left\{ (-x-2)^3 (5-x) - 72 \right\}$$

When this function is then dilated by a factor of 2 from the *x*-axis the rule becomes

$$\frac{y}{2} = \frac{1}{56} \left\{ (-x-2)^3 (5-x) - 72 \right\}$$

So $h(x) = \frac{1}{28} \left\{ (-x-2)^3 (5-x) - 72 \right\}$

(1 mark)

h. i. The function y = r(x) is the inverse function of the function y = f(x) and vice-versa.

(1 mark)

ii. The coordinates of the point
$$B' \operatorname{are} \left(-\frac{9}{7}, 2\right)$$
 because the coordinates of *B* are $\left(2, -\frac{9}{7}\right)$ from part **d.i.**

(1 mark)

Total 16 marks

a. Since $d_f = [-1,1]$ and since the point *A* is at the right hand endpoint of the graph, x = 1. $f(1) = \tan(1)$ $= 1 \cdot 56$ (correct to 2 decimal places) *A* is the point $(1, 1 \cdot 56)$

b. The function *f* is not defined for $x = \pm \frac{\pi}{2}$, since an asymptote exists on the graph of

 $y = \tan(x)$ at $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{2}$. Since $\frac{\pi}{2} = 1.57...$, this would be within 2km in the directions east and west of the intersection.

(1 mark)

$$y = \tan(x)$$
$$\frac{dy}{dx} = \sec^{2}(x)$$
At $x = 0$
$$\frac{dy}{dx} = \sec^{2}(0)$$
$$= \frac{1}{\cos^{2}(0)}$$
$$= \frac{1}{1^{2}}$$
$$= 1$$

(1 mark)

So at the point of intersection (i.e. (0,0)), the gradient of the function $y = \tan(x)$ is 1 and so the rail line makes an angle of 45° or $\frac{\pi}{4}$ with the road heading north (and of course with the road heading east).

(1 mark)

At point B, $\frac{dy}{dx} = \frac{4}{3}$ Since point *B* lies on the main rail line, we have $y = \tan(x)$ So $\frac{dy}{dx} = \sec^2(x)$ So $\frac{4}{2} = \sec^2(x)$ (1 mark) $\frac{4}{3} = \frac{1}{\cos^2(x)}$ $\cos^2(x) = \frac{3}{4}$ $\cos(x) = \pm \frac{\sqrt{3}}{2}$ $x = \frac{\pi}{6}, \frac{5\pi}{6}...$ (1 mark) Since $d_f = [-1,1]$ and $\frac{5\pi}{6} = 2 \cdot 6179...$ then $x = \frac{5\pi}{6}$ is outside the domain. (1 mark) The value of x is $\frac{\pi}{6}$. Since $f(x) = \tan(x)$ $f\left(\frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right)$ $=\frac{1}{\sqrt{3}}$ So *B* is the point $\left(\frac{\pi}{6}, \frac{1}{\sqrt{3}}\right)$. (1 mark) The gradient of the shunting line is $\frac{4}{3}$ and it passes through $\left(\frac{\pi}{6}, \frac{1}{\sqrt{3}}\right)$. The equation of the shunting line is $y - \frac{1}{\sqrt{3}} = \frac{4}{3} \left(x - \frac{\pi}{6} \right)$. (1 mark) The road running in the east-west direction is represented by the x-axis along which v = 0. So $0 - \frac{1}{\sqrt{3}} = \frac{4}{3} \left(x - \frac{\pi}{6} \right)$ $\frac{-3}{\sqrt{2}} = 4x - \frac{2\pi}{3}$ $4x = \frac{2\pi}{2} - \sqrt{3}$ $x = \frac{\pi}{6} - \frac{\sqrt{3}}{4}$ $= 0 \cdot 0905...$

(1 mark)

Since x > 0, the point of intersection occurs on the east side of the dangerous intersection. (1 mark)

d.

e.

f.

i.

The curves with equations $y = \tan(x)$ and $y = a - b\sqrt{2}\cos(x)$ meet smoothly at point C where $x = \frac{\pi}{4}$. This means firstly that at $x = \frac{\pi}{4}$ $\tan(x) = a - b\sqrt{2}\cos(x)$ that is, $\tan\left(\frac{\pi}{4}\right) = a - b\sqrt{2}\cos\left(\frac{\pi}{4}\right)$ $1 = a - b\sqrt{2} \times \frac{1}{\sqrt{2}}$ -(1)1 = a - b(1 mark) Secondly, this means that if $y = \tan(x)$ $\frac{dy}{dx} = \sec^2(x)$ and if $y = a - b\sqrt{2}\cos(x)$ $\frac{dy}{dx} = b\sqrt{2}\sin(x)$ At $x = \frac{\pi}{4}$, the gradients are equal (1 mark) $\sec^2(x) = b\sqrt{2}\sin(x)$ so that is, $\sec^2\left(\frac{\pi}{4}\right) = b\sqrt{2}\sin\left(\frac{\pi}{4}\right)$ $\frac{1}{\cos^2\left(\frac{\pi}{4}\right)} = b\sqrt{2} \times \frac{1}{\sqrt{2}}$ $\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^2} = b$ $b=1\div\frac{1}{2}$ = 2 From (1) 1 = a - bso *a* = 3 Have shown. (1 mark) We are looking for the *y*-intercept of the graph of $y = 3 - 2\sqrt{2}\cos(x)$. When r = 0

$$y = 3 - 2\sqrt{2} \cos(0)$$

= 3 - 2\sqrt{2}
= 0.17157...km
= 172 metres (to the nearest metre)

(1 mark) Total 15 marks

ii.