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TURN OVER

Question 1

a. 
x + 2

x − 3
 can be expressed in the form A + B

x − 3
, where A and B are real constants. Show that A = 1 and 

 B = 5.

 

 

 

 

1 mark

b. Hence, sketch the graph of y = g(x) given g : R \ {3}→ R,where g(x) = A + B

x − 3
 on the set of axes 

 below, clearly showing the coordinates of any intercepts with the coordinate axes and the equations of 
the asymptotes.

 Consider the function with rule f (x) = x + 2

x − 3
.

3 marks

c. State the maximal domain of f (x).

 

 

1 mark

1 + 3 + 1 = 5 marks

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an exact answer is required to a question.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.
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Question 2

Consider the function f : (−∞,  a) → R where f (x) = log e 2x −1, where a is a real constant.

a. Find the largest value of a so that f -1 exists.

 

 

1 mark

b. State the rule for f -1, for this value of a.

 

 

 

 

 

 

2 marks

1 + 2 = 3 marks

Question 3

For what values of k, where k is a real constant, does the equation 4x –5(2x) = k, have two distinct solutions?

 

 

 

 

 

 

 

 

 

 

 

4 marks
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TURN OVER

Question 4

Consider the functions with rules f (x) = (1 − x)
1

3 and g(x) = loge(2x).

a. Find f (g(x)).

 

 

1 mark

b. Find the equation of the tangent to f (g(x)) at x = 1

2
.

 

 

 

 

 

 

 

 

 

 

4 marks

1 + 4 = 5 marks

Question 5

Find the area bounded by the x-axis and the curve with equation y = x(x + 1)2.

 

 

 

 

 

 

 

3 marks
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Question 6

Consider the function s :[0,9]→ R,where s(t ) = 4sin
π
6

t
 
  

 
  − 2.

a. For the function, write down

i. the range and

 

 

1 mark

ii. the period.

 

 

1 mark

b. Solve the equation s(t) = 0, for t∈[0, 9].

 

 

 

 

 

 

2 marks

c. Sketch the graph of the function s on the set of axes below. Label the axes intercepts and endpoints 
with their coordinates.

–1  1 2 3 4 5 6 7 8 9 10

7
6
5
4
3
2
1

–1
–2
–3
–4
–5
–6
–7

s

t

3 marks

1 + 1 + 2 + 3 = 7 marks
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TURN OVER

Question 7

A shop in the historic town of Brugge sells hand-made Belgian chocolates. The mass, in grams, of a box of 
twenty chocolates is a normally distributed random variable, X, with a mean of 510 grams and a standard 
deviation of 40 grams.

a. If Pr(k  < X  < 590) ≈ 0.95, find the value of k.

 

 

 

1 mark

b. Let Z be the standard normal random variable. To answer the following, use the result that, correct to 
two decimal places, Pr(Z  < – 0.5) ≈ 0.31. Give your answers correct to two decimal places.

i. John randomly selects a box of these chocolates from the shelf. What is the probability that its 
mass is less than 530 grams?

 

 

 

2 marks

ii. The shopkeeper sold Marie a box of chocolates with a mass greater than the mean value of 510 
grams. What is the probability that its mass is less than 530 grams?

 

 

 

 

 

2 marks

1 + 2 + 2 = 5 marks
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Question 8

A continuous random variable, X, has a probability density function given by

f (x) =
a(x +1) for −1 ≤ x ≤ 3

0 otherwise

 
 
 

,

where a is a real constant.

a. Show that a = 1

8
.

 

 

 

 

 

 

2 marks

b. Evaluate Pr(X  < 0).

 

 

 

 

 

1 mark

c. Find the mean value of X.

 

 

 

 

 

 

2 marks
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d. Find the value(s) of m for which 
1

8
x +1( ) 

  
 
  

−1

m

∫ dx = 1

2
. Hence state the median value of X.

 

 

 

 

 

 

 

 

 

 

 

3marks

2 + 1 + 2 + 3 = 8 marks
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Question 2

a. a = 1

2
	 1A

b. Let	y = log e 2x −1,	where	x < 1

2
For	the	inverse	swap	x	and	y

x = log e 2y −1,	where	y < 1

2
	 1A

x =
log e 2y −1( ), y > 1

2

log e 1 − 2y( ), y < 1
2

 
 
 

  

ex	=	1	–	2y

y = 1 − e x

2

f −1(x) = 1 − e x

2
	 1A

Question 3

4x	–	5(2x)	=	k

Let	a	=	2x,	a	>	0

a2	–	5a	–	k	=	0	 1M

a = 5 ± 25 + 4k

2

0	< ∆ <	25	as	a	>	0

0	<	25	+	4k	<	25	 1M	for	discriminant	
	 1A	for	restriction

− 25

4
< k < 0	 1A

Question 1

a. 
x + 2

x − 3
= 1 + 5

x − 3

x + 2

x − 3
= (x − 3) + 5

x − 3

= (x − 3)

x − 3
+ 5

x − 3
	 1M

= 1 + 5

x − 3

Alternatively,	use	the	long	division	
algorithm.

x − 3 x + 2

x − 3

1

)

5

	 1M

x + 2

x − 3
= 1 + 5

x − 3

b. y

x

x = 3

y  = g(x)

(–2,0) (0, − 2

3
)

5

–5

O–6 –4 –2 2 4 6 8 10

y = 1

Shape	 1A

Asymptotes	y	=	1	and	x	=	3	 1A

Intercepts	 0,  − 2

3

 
  

 
  	and	(–2,	0)	 1A

c. (−∞ ,−2] ∪ (3,∞)	 1A

Mathematical Methods Exam 1: Solutions
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SOLUTIONS – continued

Question 4

a. f (g(x)) = (1 − log e (2x))
1

3 1A

b. By the chain rule,

′ f (g(x)) × ′ g (x) = 1

3
(1 − log e (2x))

−2

3 × −1

x
 1M

Substitute x = 1

2
 into the derivative  

to find m.

m = 1

3
(1 − log e (1))

−2

3 × −2

= 
−2

3
 1M

f g
1

2

 
  

 
  

 
  

 
  = (1 − log e (1))

1

3 = 1 1M

The equation of the tangent is

y −1 = −2

3
(x − 1

2
)

y = − 2

3
x + 4

3
 1A

Question 5

Area = − x(x +1)2( )dx
−1

0

∫ = x(x +1)2( )dx
0

−1

∫  1A

= x 3 + 2x 2 + x( )dx
0

−1

∫

= 
x 4

4
+ 2x 3

3
+ x 2

2

 

 
 

 

 
 

0

−1

 1M

= (
1

4
− 2

3
+ 1

2
) − 0

 
  

 
  

= 3 − 8 + 6

12

= 
1

12 units2 1A

Question 6

a. i. Range: [–4 – 2, 4 – 2] = [–6, 2] 1A

 ii. Period = 
2π
π 6

= 2π
1

× 6

π
= 12 1A

b. Solve 4sin
π
6

t
 
  

 
  − 2 = 0.

sin
π
6

t
 
  

 
  =

1

2
 1M

π
6

t = π
6

,
5π
6

,
13π

6
,...

t = π
6

× 6

π
,
5π
6

× 6

π
,
13π

6
× 6

π
,...

 

Since t∈[0, 9],

t = 1 or t = 5 1A

c. 

–1  1 2 3 4 5 6 7 8 9 10

7
6
5
4
3
2
1

–1
–2
–3
–4
–5
–6
–7

s

t

(9,–6)

(5,0)(1,0)

(0,–2)

Correct shape: 1A 
Coordinates of x-axis intercepts labelled: 1A 
Endpoints labelled: 1A



Question 7

a. Pr(µ – 2σ < X < µ + 2σ) ≈ 0.95

Therefore Pr(430 < X < 590) ≈ 0.95

k = 430 1A

b. 

0-31
0-19

0-31

0-19

Z

X
–0-5 0 0-5

490 510 530

Pr(X < 530) = 1 – Pr(Z < –0.5) 1M

= 1 – 0.31

= 0.69 1A

c. Pr X < 530| X > 510( ) =
Pr X > 510 ∩ X < 530( )

Pr X > 510( )

=
Pr 510 < X < 530( )

Pr X > 510( )  1M

= 0.19

0.5
= 0.19 × 2

= 0.38 1A

Question 8

a. For f to be a probability density function,

f (x) = 1
−∞

∞

∫ . Therefore,

0 + a (x +1)dx = 1
−1

3

∫

a
x 2

2
+ x

 

 
 

 

 
 

−1

3

= 1

a
9

2
+ 3

 
  

 
  −

1

2
−1

 
  

 
  

 

 
 

 

 
 = 1

8a = 1

 1M

a = 1

8
 , as required 1M

b. 

Pr(X < 0) = 1

8
(x +1)dx

−1

0

∫

= 1

8

x 2

2
+ x

 

 
 

 

 
 

−1

0

= 1

8
0 − 1

2
−1

 
  

 
  

 

 
 

 

 
 

= 1

16
 1A

c.

E( X ) = x f (x)dx
−∞

∞

∫

= 0 + 1

8
(x 2 + x)dx

−1

3

∫

= 1

8

x 3

3
+ x 2

2

 

 
 

 

 
 

−1

3

= 1

8
9 + 9

2

 
  

 
  − − 1

3
+ 1

2

 
  

 
  

 

 
 

 

 
 

= 1

8

26

2
+ 1

3

 

 
 

 

 
 

= 1

8
× 40

3

 1M

= 5

3
 1A
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d.

1

8
x +1( )

−1

m

∫ dx = 1

2

x +1( )
−1

m

∫ dx = 4

x 2

2
+ x

 

 
 

 

 
 

−1

m

= 4 1M

m2

2
+ m

 

  
 

  −
1

2
−1

 
  

 
  

 

 
 
 

 

 
 
 

= 4

m2

2
+ m + 1

2
= 4

m2 + 2m − 7 = 0

Use quadratic formula or complete the 
square

m = −2 ± 4 + 28

2

= −2 ± 32

2

= −2 ± 4 2

2

= −1 ± 2 2 1M

Note that −1 − 2 2  is outside the domain 
because m > –1.

Median value is −1 + 2 2 1A
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Detach this formula sheet during reading time.

This formula sheet is provided for your reference.
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Mathematical Methods and Mathematical Methods CAS 
Formulas

Mensuration

area of a trapezium: 1
2

a b h+( )  volume of a pyramid: 
1
3

Ah

curved surface area of a cylinder: 2π  rh volume of a sphere: 
4
3

3π r

volume of a cylinder: π r2h area of a triangle: 
1
2

bc Asin

volume of a cone:                             1
3

2π r h

Calculus
d
dx

x nxn n( ) = −1

                                                             
x dx

n
x c nn n=

+
+ ≠ −+∫

1
1

11 ,

d
dx

e aeax ax( ) =                                                              e dx a e cax ax= +∫
1

d
dx

x xelog ( )( ) = 1
                                                           

1
x dx x ce= +∫ log

d
dx

ax a axsin( ) cos( )( ) =                                                sin( ) cos( )ax dx a ax c= − +∫
1

d
dx

ax a axcos( )( ) −=  sin( )                                             
cos( ) sin( )ax dx a ax c= +∫

1

d
dx

ax a
ax

a axtan( )
( )

( ) ==
cos

 sec ( )2
2  

product rule: d
dx

uv u dv
dx

v du
dx

( ) = +  quotient rule: d
dx

u
v

v du
dx

u dv
dx

v






=
−
2

chain rule: dy
dx

dy
du

du
dx

=  approximation: f x h f x h f x+( ) ≈ ( ) + ′( )

Probability
Pr(A) = 1 – Pr(A′) Pr(A ∪ B) = Pr(A) + Pr(B) – Pr(A ∩ B)

Pr(A|B) =
Pr

Pr
A B

B
∩( )

( )
mean:  µ = E(X)                                                       variance:  var(X) = σ 2 = E((X – µ)2) = E(X2) – µ2

probability distribution mean variance

discrete Pr(X = x) = p(x) µ = ∑ x p(x) σ 2 = ∑ (x – µ)2 p(x)

continuous Pr(a < X < b) = f x dx
a

b
( )∫ µ =

−∞

∞
∫ x f x dx( ) σ µ2 2= −

−∞

∞
∫ ( ) ( )x f x dx

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2006
REPRODUCED WITH PERMISSION MATHEMATICAL ASSOCIATION OF VICTORIA 2006
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