

THE SCHOOL FOR EXCELLENCE

UNITS 3&4 MATHEMATICAL METHODS 2007 COMPLIMENTARY WRITTEN EXAMINATION 2 - SOLUTIONS

SECTION 1 – MULTIPLE CHOICE QUESTIONS

1	2	3	4	5	6	7	8	9	10	11
А	С	В	Е	А	А	С	В	D	E	D

12	13	14	15	16	17	18	19	20	21	22
В	А	D	D	А	С	D	С	В	С	Е

QUESTION 1

Subtract ordinates across the common domain i.e. $(0, \infty)$. Alternatively, draw the graph of y = -g(x) then add the ordinates of y = f(x) and y = -g(x) across the common domain.

The answer is A.

- **Option A:** $b > a \Rightarrow \frac{b}{a} > 1$ therefore $\sin(2x) = \frac{b}{a}$ has no real solution (as $\frac{b}{a}$ must lie between -1 and 1 inclusive. Therefore option A is true.
- **Option B:** If 0 < b < a, it can be seen from the graph below that there are 4 solutions to $sin(2x) = \frac{b}{a}$ for all possible values of *a* and *b*. Therefore option B is true.

Option C: If 0 < b < a, it can be seen from the graph below that there are 2 solutions to $a \sin(2x) = -b$. Therefore option C is **not** true.

Option D: $f(x) = -g(x) \Rightarrow a\sin(2x) = -b$.

$$a = b \Rightarrow \sin(2x) = -1$$
 $\therefore 2x = \frac{3\pi}{2} + 2n\pi, n \in \mathbb{Z}$ $\therefore x = \frac{3\pi}{4} + n\pi$

There is only 1 solution for $0 < x < \frac{3\pi}{2}$.Therefore option D is true.

Option E: $f(x) = g(x) \Rightarrow a\sin(2x) = b$

$$a = b \Rightarrow \sin(2x) = 1$$
 $\therefore 2x = \frac{\pi}{2} + 2n\pi, n \in \mathbb{Z}$ $\therefore x = \frac{\pi}{4} + n\pi$

There are 2 solutions for $0 < x < \frac{3\pi}{2}$. Therefore option E is true.

The answer is C.

To solve $|2x-3| \ge x^2 - 2$, first note that $|2x-3| = \begin{cases} 2x-3 & \text{when } 2x-3 \ge 0 \Rightarrow x \ge \frac{3}{2} \\ -(2x-3) & \text{when } 2x-3 < 0 \Rightarrow x < \frac{3}{2} \end{cases}$

Case 1:

Case 2:

 $2x - 3 \ge x^{2} - 2, \quad x \ge \frac{3}{2}, \qquad -2x + 3 \ge x^{2} - 2, \quad x < \frac{3}{2},$ $\therefore x^{2} - 2x + 1 \le 0 \qquad \therefore x^{2} + 2x - 5 \le 0.$ $\therefore (x - 1)^{2} \le 0 \qquad \qquad \text{When } x^{2} + 2x - 5 = 0,$ $\therefore x = 1. \qquad \qquad x = -1 \pm \sqrt{6}.$

But $x \ge \frac{3}{2}$ is not satisfied.

Therefore there is no solution.

 $x = -1 \pm \sqrt{6}$. From the graph it can be seen that the solution to $\therefore x^2 + 2x - 5 \le 0 \text{ is therefore}$ $\{x : -1 + \sqrt{6} \le x \le -1 - \sqrt{6}\}.$

Note that $x < \frac{3}{2}$ is satisfied.

Therefore the solution to $|2x-3| \ge x^2 - 2$ is $\{x: -1 + \sqrt{6} < x < -1 - \sqrt{6}\}$.

The answer is B.

QUESTION 4

From the graph of $f: [-3, 2] \rightarrow R$, $f(x) = 3 - (x+1)^2$ the range is [-6, 3].

The answer is E.

 $-1 - \sqrt{6}$

QUESTION 5

A function must be one-to-one in order to have an inverse function.

$$f:[0, a] \rightarrow R, f(x) = 3\cos(2x)$$
 is a one-to-one function for $a \le \frac{\pi}{2}$.

The answer is A.

The graph of $y = a(x+b)^3(x+c)$ has:

- a stationary point of inflexion that is also an *x*-intercept at x = -b. This corresponds to x = -1 on the graph. Therefore b = 1.
- an x-intercept at x = -c. This corresponds to x = 2. Therefore c = -2.

Therefore $y = a(x+1)^{3}(x-2)$.

As (0,1) is a point on the graph:

$$\therefore 1 = a(0+1)^3(0-2)$$

$$\therefore 1 = -2a$$

$$\therefore a = -\frac{1}{2}$$

$$\therefore a = -\frac{1}{2}, b = 1, c = -2$$

The answer is A.

QUESTION 7

Linear approximation: $f(x + h) \approx f(x) + hf'(x)$. Let x = 1 and x + h = 0.9 $\therefore h = -0.1$. $f(x) = \frac{x-1}{\sqrt{x}} = \sqrt{x} - \frac{1}{\sqrt{x}}$ and f(1) = 0. $f'(x) = \frac{1}{2} \frac{1}{\sqrt{x}} + \frac{1}{2} \frac{1}{x\sqrt{x}}$ $\therefore f'(1) = 1$. $f(0.9) \approx f(1) - 0.1f'(1)$ $\approx 0 - 0.1(1)$ ≈ -0.1 Change in f = f(0.9) - f(1) = -0.1 - 0= -0.1

The answer is C.

Amplitude = 4 Period = $\frac{1}{8} = \frac{2\pi}{n}$ $\therefore n = 16\pi$ A. $f(t) = 2\sin\left(\frac{\pi t}{4}\right)$ is incorrect as the period = 8 B. $f(t) = 4\sin(16\pi t)$ is correct. C. $f(t) = 4\sin(8\pi t)$ is incorrect as period = $\frac{1}{4}$ D. $f(t) = 4\sin\left(\frac{\pi t}{4}\right)$ is incorrect as period = 8 E. $f(t) = 2\sin\left(\frac{\pi t}{8}\right)$ is incorrect as the period = 16

The answer is B.

QUESTION 9

$$f(x) = x + \sqrt{x+a}$$
$$\therefore f'(x) = 1 + \frac{1}{2\sqrt{x+a}}$$

For stationary points f'(x) = 0:

$$0 = 1 + \frac{1}{2\sqrt{x+a}}$$
$$\therefore \frac{1}{2\sqrt{x+a}} = -1$$
$$\therefore \sqrt{x+a} = -\frac{1}{2}.$$

This equation has no real solutions.

The answer is D.

$$\log_{e} x = \log_{e} (x - 1) + b$$
$$\log_{e} x - \log_{e} (x - 1) = b$$
$$\log_{e} \left(\frac{x}{x - 1}\right) = b$$
$$\frac{x}{x - 1} = e^{b}$$
$$x = e^{b} (x - 1)$$
$$x(1 - e^{b}) = -e^{b}$$
$$x = \frac{e^{b}}{e^{b} - 1}$$

The answer is E.

QUESTION 11

$$f(x) = a \log_e (bx - c)$$
$$f(x) = a \log_e b \left(x - \frac{c}{b} \right)$$

The function has a vertical asymptote at $x = \frac{c}{b}$, therefore the domain is $\left(\frac{c}{b}, \infty\right)$.

The answer is D.

QUESTION 12 The answer is B.

QUESTION 13

The graph of f has a negative gradient throughout its domain. Therefore A and D are the only possibilities. As x increases the gradient approaches zero. Therefore A is most likely to be the correct graph.

The answer is A.

$$y = x^{n} e^{3x-n}$$

$$\frac{dy}{dx} = nx^{n-1} e^{3x-n} + 3x^{n} e^{3x-n}$$

$$= x^{n-1} e^{3x-n} (n+3)$$

At the point, $(1, e^{3-n})$, $\frac{dy}{dx} = 1^{n-1}e^{3-n}(n+3)$ = $(n+3)e^{3-n}$.

The answer is D.

QUESTION 15

Using the chain rule:
$$\frac{d}{dx} \left(\log_e \sqrt{2x^2 + 1} \right) = \frac{2x}{2x^2 + 1}$$

The answer is D.

QUESTION 16

$$\int_{a}^{b} 1 - 3f(x) \, dx = \int_{a}^{b} 1 \, dx - 3 \int_{a}^{b} f(x) \, dx$$
$$= [x]_{a}^{b} - 3(1)$$
$$= b - a - 3$$

The answer is A.

QUESTION 17

Area =
$$-\int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx - \int_{a}^{c} f(x) dx$$

= $2\int_{0}^{a} f(x) dx - \int_{a}^{c} f(x) dx$ Note
symm
= $2\int_{0}^{a} f(x) dx + \int_{c}^{a} f(x) dx$

Note that, based on the graph, an assumption of symmetry is made.

The answer is C.

$$\frac{d}{dx} (x \log_e(3x)) = 1 + \log_e(3x)$$

Integrate both sides:
$$x \log_e(3x) = x + c_1 + \int \log_e(3x) dx$$
$$\therefore \int \log_e(3x) dx = x \log_e(3x) - x - c_1$$
$$\therefore \int 2 \log_e(3x) dx = 2(x \log_e(3x) - x - c_2)$$
$$= 2x (\log_e(3x) - 1) - c$$

The answer is D.

QUESTION 19

$$\Pr(X > k) = \frac{7}{8}$$

$$\therefore \int_{k}^{1} \frac{3\sqrt{x}}{2} \, dx = \frac{7}{8} \qquad \therefore \left[x^{\frac{3}{2}}\right]_{k}^{1} = \frac{7}{8} \qquad \therefore 1 - k^{\frac{3}{2}} = \frac{7}{8} \qquad \therefore k^{\frac{3}{2}} = \frac{1}{8} \qquad k = \frac{1}{4}.$$

The answer is C.

QUESTION 20

Let X be the number of defective MP3 players in a sample of n.

X is a binomial random variable where p = 1 - 0.98 = 0.02 and the sample size is *n*.

Note: Pr(not defective) = 0.98 Pr(defective) = 0.02

$$Pr(X > 1) = 1 - Pr(X = 0) - Pr(X = 1)$$

= $1 - {\binom{n}{0}}(0.02)^0 (0.98)^n - {\binom{n}{1}}(0.02)^1 (0.98)^{n-1}$
= $1 - (0.98)^n - n(0.02)(0.98)^{n-1}$

The answer is B.

The standard deviation $\frac{\sigma}{2}$ will halve the spread so the graph will be narrow and taller. The mean will not affect the spread or height of the graph.

Option A is incorrect as the spread is too small.

Option B is incorrect as the spread is too large.

Option C is correct as its spread is half of the original graph and it is taller.

Option D is incorrect as the graph does not represent a normal distribution.

Option E is incorrect as the spread is too large.

The answer is C.

QUESTION 22

Let X = the number of goals in n trials.

X follows a binomial distribution with p = 0.4 and number of trials = n.

 $\Pr(X \ge 1) \ge 0.9$

$$\therefore 1 - \Pr(X = 0) \ge 0.9$$

$$\therefore \Pr(X=1) \le 0.1$$

$$\left(\begin{array}{c} n \\ 0 \end{array} \right) (0.4)^0 (0.6)^n \le 0.1$$

$$\therefore (0.6)^n \le 0.1$$

Using a graphics calculator, the solution to $(0.6)^n = 0.1$ is 4.508. Therefore *n* must be 5 since $(0.6)^n \le 0.1$ is required.

The answer is E.

SECTION 2 – EXTENDED ANSWER QUESTIONS

QUESTION 1

Note that $D_g = R \setminus \{1\}$.

a. (i)
$$f(g(x)) = f(\log_e |x-1|)$$

 $= e^{2\log_e |x-1|}$
 $= e^{\log_e |x-1|^2}$
 $= (x-1)^2, x \in R \setminus \{1\} \text{ since } D_g = R \setminus \{1\}.$

(ii)
$$(fog)'(x) = 2(x-1), x \in R \setminus \{1\}$$

$$\therefore (fog)'(-1) = 2(-1-1) = -4.$$
A1
ran $f = (0, \infty)$ and dom $g = D_{-1} = R \setminus \{1\}$

b. ran
$$f = (0, \infty)$$
 and dom $g = D_g = R \setminus \{1\}$.
 $(0, \infty) \not\subset R \setminus \{1\}$ Note: $R \setminus \{1\} \equiv (-\infty, 1) \cup (1, +\infty)$
 \therefore ran $f \not\subset \text{dom } g$
 $\therefore f(g(x))$ does not exist. M1
c. (i) Require ran $f_1 = (1, \infty)$

$$\therefore \operatorname{dom} f_1 = (0, \infty) \,. \tag{A1}$$

$$g(f_1(x)) = g(e^{2x}) = \log_e |e^{2x} - 1|, \quad 0 < x < \infty.$$

(ii) Require ran
$$f_2 = (0, 1)$$

 $\therefore \text{ dom } f_2 = (-\infty, 0)$ A1
 $g(f_2(x)) = g(e^{2x}) = \log_e |e^{2x} - 1|, -\infty < x < 0.$

d. (i)
$$f(g(x)) = g(f_1(x))$$

 $\therefore (x-1)^2 = \log_e |e^{2x} - 1|, x \neq 1.$

:. The coordinates of the point of intersection that lies to the right of the line x = 1 are (3.7, 7.5).

Area =
$$\int_{1}^{3.732} \left(\log_e |e^{2x} - 1| - (x - 1)^2 \right) dx + \int_{3.732}^{5} \left((x - 1)^2 - \log_e |e^{2x} - 1| \right) dx$$
 M1

$$\approx (12.858 - 6.797) + (14.536 - 11.072)$$

= 6.061 + 3.464
= 9.525
= 9.5, correct to one decimal place.

A1

Note 1:
$$\int_{1}^{3.732} \left(\log_e |e^{2x} - 1| - (x - 1)^2 \right) dx$$
 is an improper integral since the lower

integral terminal lies outside the domain of $f(g(x)) = (x-1)^2$ (see the above graph). However, the integral can be shown to exist via a limiting process, which is why the calculator gives a finite value.

Note 2: During a calculation, accuracy greater than that specified for the answer should be used so as to avoid the accumulation of rounding error.

QUESTION 2

a. (i)
$$a = \text{amplitude} = \frac{1}{2} |h_{\text{max}} - h_{\text{min}}| = \frac{1}{2} ([18 + 2 + 100] - [18 + 2])$$

 $= \frac{1}{2} (120 - 20) = 50 \text{ metres.}$ M1
(ii) Minimum height = 18 + 2 = 20 metres = (-Amplitude + Vertical Translation)

$$\therefore 20 = b - a$$

$$\therefore 20 = b - 50$$

$$\therefore b = 70$$
 M1

(ii)

b. Period = 80 seconds = $\frac{4}{3}$ minutes

$$\therefore \frac{2\pi}{c} = \frac{4}{3}$$
$$\therefore c = 2\pi \times \frac{3}{4}$$
$$= \frac{3\pi}{2}$$

c.
$$h = 70 + 50\sin\frac{3\pi}{2}(t+d)$$

When
$$t = 0$$
, $h = 20$

۱

$$\therefore 20 = 70 + 50 \sin\left(\frac{3\pi d}{2}\right)$$
$$\therefore \sin\left(\frac{3\pi d}{2}\right) = -1$$
$$\therefore \frac{3\pi d}{2} = \frac{3\pi}{2}$$
M1

 $\therefore d = 1$ is a possible value.

d. Period =
$$\frac{4}{3}$$
 minutes.

Therefore the point *P* reaches the maximum height once every $\frac{4}{3}$ minutes:

$$36 \div \frac{4}{3} = 36 \times \frac{3}{4} = 27$$
.

Therefore the point P reaches its maximum height 27 times during a 36 minute ride.

A1

M1

e. $70 + 50 \sin \frac{3\pi}{2}(t+1) \ge 95$. First solve $70 + 50 \sin \frac{3\pi}{2}(t+1) = 95$ where the smallest value of t satisfying $0 \le t \le 36$ is required: $70 + 50 \sin \frac{3\pi}{2}(t+1) = 95$, $0 \le t \le 36$ $\therefore \sin \frac{3\pi}{2}(t+1) = \frac{1}{2}$ $\therefore \frac{3\pi}{2}(t+1) = \frac{\pi}{6} + 2m\pi$ or $\frac{5\pi}{6} + 2m\pi$, where $m \in \mathbb{Z}$. M1

M1

$$\therefore t + 1 = \frac{1}{9} + \frac{4m}{3} \text{ or } \frac{5}{9} + \frac{4m}{3}$$
$$\therefore t = -\frac{8}{9} + \frac{4m}{3} = \frac{12m - 8}{9} \text{ or } -\frac{4}{9} + \frac{4m}{3} = \frac{12m - 4}{9}.$$

The smallest value of t satisfying $0 \le t \le 36$ is $t = \frac{4}{9}$ minutes. A1

Therefore the point P first reaches a height of at least 95 metres above ground level

after
$$\frac{4}{9}$$
 minutes.

f. During the first rotation *P* is at a height of 95 metres above the ground a second time when $t = \frac{8}{9}$ minutes (see **part e**).

From the graph it is clear that the number of minutes during one rotation that the point *P* is at least 95 metres above ground level is $\frac{8}{9} - \frac{4}{9} = \frac{4}{9}$ minutes:

$$\frac{4}{9}$$
 minutes $=\frac{4}{9} \times 60$ seconds $=\frac{80}{3}$ seconds A1

g.
$$h = 70 + 50 \sin \frac{3\pi}{2} (t+1)$$

$$\therefore \frac{dh}{dt} = 50 \times \frac{3\pi}{2} \cos \frac{3\pi}{2} (t+1)$$

$$= 75\pi \cos \frac{3\pi}{2} (t+1)$$
 M1
Let $\frac{dh}{dt} > 200$

$$\therefore 75\pi \cos \frac{3\pi}{2} (t+1) > 200$$

$$\therefore \cos \frac{3\pi}{2} (t+1) > \frac{8}{3\pi}$$

Enter $y = 75\pi \cos \frac{3\pi}{2}(t+1)$ and $y = \frac{8}{3\pi}$ in the **y** = editor of a graphics calculator.

Then use 2nd CALC 5: intersect to find two consecutive solutions to
$$\cos \frac{3\pi}{2}(t+1) = \frac{8}{3\pi}$$
.

$$\therefore$$
 $t = 0.2151$ minutes and $t = 0.4515$ minutes. M1

0.452 - 0.215 = 0.2354 minutes = 14.18 seconds.

Therefore $\frac{dh}{dt}$ > 200 m/s for 14.18 seconds, which is less than 20 seconds. A1 The average person will not feel sick on the Southern Star Observation Wheel.

h.
$$h = 70 + 50 \sin c(t+1)$$

$$\therefore \frac{dh}{dt} = 50c \cos(c(t+1))$$

• The smallest positive value of *c* such that $\frac{dh}{dt} > 200$ for no more than 10 seconds at a time and the wheel turns as guickly as possible is required.

• 10 seconds =
$$\frac{1}{6}$$
 minutes.

1

• Therefore the positive value of c is required such that if t_1 and $t_2 > t_1$ are two consecutive solutions to $50c \cos(c(t+1)) = 200$, then $t_1 - t_2 = \frac{1}{6}$. M1

$$50c \cos(c(t+1)) = 200$$

$$\therefore \cos(c(t+1)) = \frac{4}{c}$$

$$\therefore c(t+1) = \pm \cos^{-1}\left(\frac{4}{c}\right)$$

$$\therefore t = \pm \frac{1}{c} \cos^{-1}\left(\frac{4}{c}\right) - 1$$
 and $t_2 = \frac{1}{c} \cos^{-1}\left(\frac{4}{c}\right) - 1$

$$\therefore t_1 = -\frac{1}{c} \cos^{-1}\left(\frac{4}{c}\right) - 1$$
 and $t_2 = \frac{1}{c} \cos^{-1}\left(\frac{4}{c}\right) - 1$

$$\therefore t_2 - t_1 = \frac{2}{c} \cos^{-1}\left(\frac{4}{c}\right)$$

$$\therefore \cos\left(\frac{c}{12}\right) = \frac{4}{c}$$

M1

• From the graphics calculator:

c = 4.267, correct to three decimal places.

A1

a. (i) When
$$t = 4$$
, $A = 9$:

$$\therefore 9 = \frac{a(4)}{3(4) + 4}$$

$$\therefore 9 = \frac{4a}{16}$$

$$\therefore 9 = \frac{a}{4}$$

$$\therefore a = 36$$
(ii) $A = \frac{36t}{3t + 4}$

Using polynomial long division:

$$3t + 4)\overline{36t} - 48$$

$$36t + 48 - 48$$

$$36t + 48 - 48$$

$$A = 12 - \frac{48}{3t + 4} = 12 \left(1 - \frac{48}{3t + 4}\right)$$
M1

M1

b.
$$D = A - B$$

 $\therefore D = 12 \left(1 - \frac{4}{3t+4} \right) - 12 \left(1 - \frac{3}{t+3} \right)$
 $\therefore D = 12 \left(\frac{3}{t+3} - \frac{4}{3t+4} \right)$
M1

c.
$$D = 12 \left(\frac{3}{t+3} - \frac{4}{3t+4} \right)$$

 $\therefore D = 12(3(t+3)^{-1} - 4(3t+4)^{-1})$
 $\therefore \frac{dD}{dt} = 12 \left(-\frac{3}{(t+3)^2} + \frac{12}{(3t+4)^2} \right)$
A2

© The School For Excellence 2007 Complimentary Mathematical Methods – Examination 2 Page 16

d. Maximum value of *D* occurs when $\frac{dD}{dt} = 0$:

$$0 = 12 \left(-\frac{3}{(t+3)^2} + \frac{12}{(3t+4)^2} \right), \quad 0 \le t \le 14.$$

$$(M1)$$

$$(1) = -\frac{3}{(t+3)^2} + \frac{12}{(3t+4)^2}$$

$$(1) = -\frac{1}{(t+3)^2} + \frac{4}{(3t+4)^2}$$

$$(1) = -\frac{1}{(t+3)^2} + \frac{4}{(3t+4)^2}$$

$$(3t+4)^2 = 4(t+3)^2$$

$$(3t+4)^2 = 4(t+3)^2$$

$$(3t+4)^2 = 4(t+3),$$

$$(3t$$

Hence the maximum difference in new influenza cases between those previously unexposed and those exposed to the virus is $2.4 \times 100 = 240$. A1 Note: *D* is measured in hundreds.

e.
$$C(t) = 4(t^2 + t)e^{-\frac{t}{k}}$$

 $\therefore C'(t) = 4\left((2t+1)e^{-\frac{t}{k}} - \frac{1}{k}e^{-\frac{t}{k}}(t^2 + t)\right)$
 $= 4e^{-\frac{t}{k}}\left(2t+1-\frac{1}{k}(t^2 + t)\right)$ M1

For maximum concentration C'(t) = 0:

$$\therefore 2t + 1 - \frac{1}{k}(t^2 + t) = 0 \qquad \text{or} \qquad e^{-\frac{t}{k}} = 0 \qquad \text{M1}$$
$$\therefore 2tk + k - t^2 - t = 0 \qquad \text{No solution}$$

When t = 4, C'(t) = 0: 8k + k - 16 - 4 = 0

$$\therefore 9k = 20$$
$$\therefore k = \frac{20}{9}$$
A1

+

f. Let A = C'(t)

Substitute $k = \frac{20}{9}$:

$$\therefore A = 4e^{-\frac{9t}{20}} \left(2t + 1 - \frac{9}{20}(t^2 + t)\right)$$
$$= 4e^{-\frac{9t}{20}} \left(\frac{31t}{20} + 1 - \frac{9t^2}{20}\right)$$
$$= \frac{1}{5}e^{-\frac{9t}{20}} \left(31t + 20 - 9t^2\right)$$

$$\frac{dA}{dt} = \frac{1}{5} \left(-\frac{9}{20} e^{-\frac{9t}{20}} \left(31t + 20 - 9t^2 \right) + e^{-\frac{9t}{20}} \left(31 - 18t \right) \right)$$

For maximum absorption $\frac{dA}{dt} = 0$:

$$0 = \frac{1}{5} \left(-\frac{9}{20} e^{-\frac{9t}{20}} (31t + 20 - 9t^2) + e^{-\frac{9t}{20}} (31 - 18t) \right)$$

$$\therefore 0 = -\frac{9}{20} (31t + 20 - 9t^2) + 31 - 18t$$

$$\therefore t = 0.76 \text{ or } 7.13$$
M1

From the graph of C'(t) below it can be seen that the maximum rate of absorption occurs after 0.76 hours.

A1

M1

- **a.** (i) $\Pr(5 < T < 15) = 0.98758 \approx 0.9876$. A1
 - (ii) $\Pr(T > 15) = 0.00621 \approx 0.0062$. A1

(iii)
$$\Pr(T > 5 | T < 15) = \frac{\Pr(T > 5 \cap T < 15)}{\Pr(T < 15)}$$

$$= \frac{\Pr(5 < T < 15)}{\Pr(T < 15)}$$

$$= \frac{0.98758}{1 - 0.00621}$$

$$= 0.9938$$
A1

- **Note:** During a calculation, accuracy greater than that specified for the answer should be used so as to avoid the accumulation of rounding error.
- **b.** Pr(T > k) = 0.0095

$$\therefore \Pr(T < k) = 1 - 0.0095 = 0.9905$$

$$\therefore k = \text{invnorm}(0.9915, 10, 2)$$

$$= 14.69$$
 M1

- = 15 correct to the nearest minute. A1
- **c.** (i) Let *Y* be the random variable "number of trains which arrive more than 15 minutes late".

$$Y \sim \text{Binomial}(n = 10, p = \Pr(T > 15) = 0.00621)$$
. M1

$$Pr(Y = 2) = {\binom{10}{2}} (0.00621)^2 (1 - 0.00621)^8 = 0.0017, \text{ correct to four decimal places.}$$

Alternatively:
$$Pr(Y = 2) = binompdf(10, 0.00621, 2) = 0.0017.$$
 A1

(ii) Pr (first train is more than 15 minutes late and the last 9 are not)

$$= p(1-p)^9$$

= 0.00621(1-0.00621)⁹

= 0.0059, correct to four decimal places.

A1

d. $E(Y) = np = 200 \times 0.0062 = 1.24$

Therefore one train out of 200 will be more than 15 minutes late. A1

From (1):
$$\mu = 4.2600$$
, correct to four decimal places. A1

f. (i)
$$\Pr(X > 3) = 0.04 \int_{3}^{5} x dx + 0.04 \int_{5}^{10} (10 - x) dx$$
 M1

$$= 0.04 \left[\frac{x^2}{2} \right]_{3}^{5} + 0.04 \left[10x - \frac{x^2}{2} \right]_{5}^{10}$$

$$= 0.04 \left(\frac{25}{2} - \frac{9}{2} \right) + 0.04 \left(100 - 50 - (50 - \frac{25}{2}) \right)$$

$$= 0.8$$
A1

(ii)
$$E(X) = 0.04 \int_{0}^{5} x^{2} dx + 0.04 \int_{5}^{10} (10x - x^{2}) dx$$
 M1

$$= 0.04 \left[\frac{x^3}{2} \right]_0^5 + 0.04 \left[5x^2 - \frac{x^3}{3} \right]_5^{10}$$

= 5 minutes. A1

(iii)
$$\Pr(X > k) = 0.8$$

 $\therefore \Pr(X < k) = 0.2$
 $\therefore 0.04 \int_{0}^{5} x dx = 0.2$ M1
 $\therefore \left[\frac{x^2}{2}\right]_{0}^{k} = 5$
 $\therefore \frac{k^2}{2} = 5$
 $\therefore k^2 = 10$
 $\therefore k = \sqrt{10}$ A1