Section A: Technology free. 51 marks Section B: CAS technology assumed. 43 marks Suggested time: 90 minutes

Section A: Short answer and extended response questions. Technology free.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- A decimal approximation will not be accepted if an exact answer is required to a question.
- In questions where more than one mark is available, appropriate working **must** be shown.

QUESTION 1

Total 5 marks

a Simplify $\frac{2x^{-2}y^2}{(2xy^{-2})^{-1}}$, expressing the answer with positive indices.

2 marks

$$\frac{2x^{-2}y^2}{(2xy^{-2})^{-1}}$$

= $\frac{2x^{-2}y^2}{2^{-1}x^{-1}y^2}$
= $2^{1+1}x^{-2+1}y^{2-2}$
= $2^2x^{-1}y^0$
= $\frac{4}{x}$

b Evaluate $256^{\frac{3}{4}}$.

2 marks

1 mark

 $(2^8)^{\frac{3}{4}} = 2^6$ = 64

c Solve $2^{x+3} = 32$ for *x*.

 $2^{x+3} = 2^5$ equate indices x + 3 = 5*x* = 2

QUESTION 2

a Evaluate log₂32.

1 mark

Total 5 marks

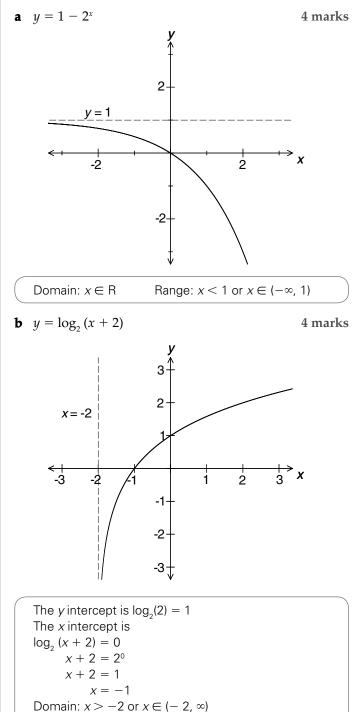
2 marks

Range: $y \in R$

 $\log_{2}(2)^{5} = 5 \log_{2} 2$ $= 5 \times 1$ = 5

b Solve the following equations for *x*.

i $\log_2 x = -3$


Using $\log_a x = y \Rightarrow x = a^y$, $x = 2^{-3}$ $=\frac{1}{8}$

ii $\log_{10} x + \log_{10} 2 - \log_{10} (x + 2) = 0$ 2 marks

 $\log_{10}\left(\frac{2x}{x+2}\right) = \log_{10}1$ Equate logarithms $\frac{2x}{x+2} = 1$ 2x = x + 2x = 2

QUESTION 3

Total 8 marks Sketch the graph of each of the following. Label any *x* and *y* intercepts. Write the equations of any asymptotes. State the domain and range of each graph.

QUESTION 4

The number of insects in a particular experiment is given by $N = N_0 10^{kt}$, where N is the number of insects at any time *t* days.

i If the number present at the start is 200, find the value of N_0 . 1 mark

 $(t = 0, N = 200); 200 = N_0 10^0$ $N_0 = 200$

ii If k = 0.01, find the number present after 300 days. 2 marks

 $N = 200 \times 10^{0.01t}$ $t = 300, N = 200 \times 10^{3}$ = 200000

QUESTION 5

Total 8 marks a Solve the simultaneous equations x - 2y + 2 = 0 and $y = \frac{3}{4}x - \frac{3}{2}$. 2 marks

x - 2y = -2Equation 1 $4y = 3x - 6 \Rightarrow 3x - 4y = 6$ Equation 2 Equation 1×-2 : -2x + 4y = 43x - 4y = 6*x* = 10 10 - 2y = -22y = 12y = 6

b Solve $\frac{3-2x}{3} + \frac{9-2x}{6} < 2$ for *x*.

2(3-2x) + 9 - 2x < 126 - 4x + 9 - 2x < 1215 - 6x < 12-6x < -3 $x > \frac{1}{2}$

The area of an annulus is $A = \pi R^2 - \pi r^2$, where *R* is С the radius of the outer circle and *r* is the radius of the inner circle.

i Transpose the formula to make *R* the subject.

3 marks

$$\pi R^{2} = A + \pi r^{2}$$

$$R^{2} = \frac{A + \pi r^{2}}{\pi}$$

$$R = \pm \sqrt{\frac{A + \pi r^{2}}{\pi}}$$

$$R = \sqrt{\frac{A + \pi r^{2}}{\pi}}, \text{ as } R > 0$$

ii Find the exact value of *R* when A = 1000 and r = 2.1 mark

$$R = \sqrt{\frac{1000 + 4\pi}{\pi}}$$

QUESTION 6 $\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$:

a If A = **i** A²

Total 4 marks

$$\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \times 1 + 3 \times -1 & 1 \times 3 + 3 \times 2 \\ -1 \times 1 + 2 \times -1 & -1 \times 3 + 2 \times 2 \end{bmatrix} = \begin{bmatrix} -2 & 9 \\ -3 & 1 \end{bmatrix}$$

ii A^{-1}

1 mark

Determinant =
$$(1 \times 2) - (-1 \times 3) = 5$$
.
 $A^{-1} = \frac{1}{5} \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix}$

b Solve the matrix equation, $\mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ for *x* and *y*. 2 marks

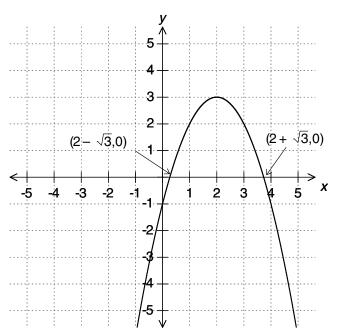
$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 2 \times 3 + -3 \times 2 \\ 1 \times 3 + 1 \times 2 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

QUESTION 7

 $y = -(x^2 - 4x + 1)$

 $= -[(x-2)^2 - 3]$ $= -(x-2)^{2} + 3$

a By completing the square, show that $y = -x^2 + 4x - 1$ can be expressed as $y = -(x - 2)^2 + 3.$


b Find the exact value of the *x* and *y* intercepts.

Total 8 marks

2 marks

3 marks

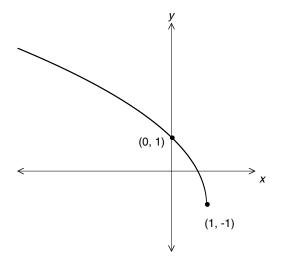
y intercept: when x = 0, y = -1*x* intercepts: $-(x-2)^2+3=0$ $(x-2)^2 = 3$ $x - 2 = \pm \sqrt{3}$ $x = 2 \pm \sqrt{3}$ **c** Sketch the graph of $y = -x^2 + 4x - 1$ on the axes provided. **3 marks**

QUESTION 8

Total 3 marks

Total 7 marks

a Use the factor theorem to show that the factors of $2x^3 - 5x^2 - 4x + 3$ are (2x - 1)(x + 1)(x - 3). 1 mark


$$P\left(\frac{1}{2}\right) = 2 \times \frac{1}{8} - 5 \times \frac{1}{4} - 4 \times \frac{1}{2} + 3$$

= $\frac{1}{4} - \frac{5}{4} - 2 + 3 = 0$
(2x - 1) is a factor.
$$P(3) = 54 - 45 - 12 + 3$$

= 0
(x - 3) is a factor.
$$P(-1) = -2 - 5 + 4 + 3 = 0$$

(x + 1) is a factor.

b Hence, find the *x* and *y* intercepts for the graph of $y = 2x^3 - 5x^2 - 4x + 3$. 2 marks

The x intercepts are $\frac{1}{2}$, -1, 3; the y intercept is 3.

QUESTION 9

The graph of $y = a\sqrt{b-x} + c$ is shown.

a State the values of *b* and *c*.

$$y = a\sqrt{-(x-b)} + c$$
. Hence, $b = 1$ and $c = -1$

b Show that
$$a = 2$$
.

2 marks

$$(0, 1): 1 = a\sqrt{-(0-1)} - 1$$

 $a\sqrt{1} = 2$
 $a = 2$

c State the transformations on $y = \sqrt{x}$ that give $y = a\sqrt{b-x} + c$ as its image. 3 marks

Dilation by 2 from the x axis, reflection in the y axis, translation of 1 in the x direction and a translation of -1 in the y direction.

Section B: Multiple-choice questions. CAS technology assumed.

Specific instructions to students

- A correct answer scores 1, and an incorrect answer scores 0.
- Marks are not deducted for incorrect answers.
- No marks are given if more than one answer is given.
- Choose the alternative which most correctly answers the question and mark your choice on the multiple-choice answer section at the bottom of each page, as shown in the example below.

A	В	С	[Ş	[Ε		-	<	l	JS	3	Έ	Ν	CI	L	0	NI	ſ

• Use pencil only.

QUESTION 10

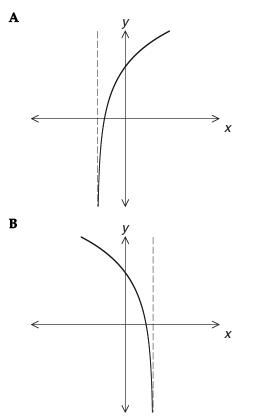
The temperature, $T^{\circ}C$, of a cooling liquid is given by the formula $T = 76(10)^{-kt} + 20$, where *t* is the time in minutes and k = 0.156. The temperature of the liquid after 5 minutes is closest to:

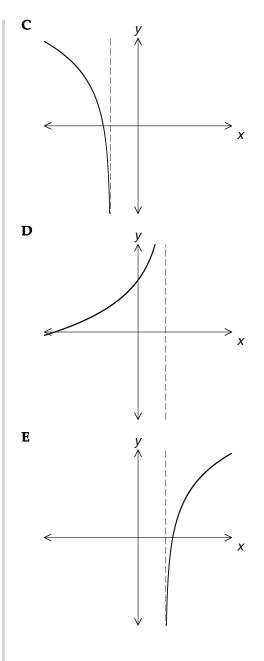
- **A** 13°C
- **B** 21°C
- **C** 33°C
- **D** 35°C
- **E** 53°C

QUESTION 11

The range of the function $f: R \to R$, $f(x) = 2 \times 10^{-x} - 1$ is:

- **A** *R*
- **B** *R*\{2}
- **C** *R*\{−1}
- **D** (−1, ∞)
- **E** [−1,∞)

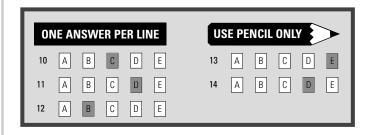

QUESTION 12


For $3 \times 3^{2x} = 9$, the value of *x* is:

- **A** $\frac{1}{3}$ **B** $\frac{1}{2}$
- $\mathbf{C} = \frac{1}{3}\log_9 2$
- C 310592
- **D** $2\log_3 3$
- **E** $\log_3 9 1$

QUESTION 13

Which of the following graphs could be the graph of $f(x) = \log_2 (x - a) + b$, where *a* and *b* are positive real numbers?



QUESTION 14

The value of the *x* intercept for the graph $g(x) = 3 - \log_2 (1 - x)$ is:

- **A** 2
- **B** −2
- **C** $-\frac{7}{8}$
- \mathbf{D} -7
- **E** 9

Section B: Extended response questions. CAS technology assumed.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- In questions where more than one mark is available, appropriate working **must** be shown.
- **QUESTION 15** Total 8 marks It is observed that over a two-week period the number of a certain organism grows according to the rule $N(t) = 10 \times 2^{0.35t}$, where *N* is the number of organisms (measured in thousands) present after *t* days.

a What is the domain of the function? 1 mark

t ∈ [0, 14]

b Find the increase in the number of organisms from t = 4 to t = 7, correct to four decimal places. 2 marks

N(7) - N(4) = 54.6416 - 26.3902= 28.2515 thousand organisms

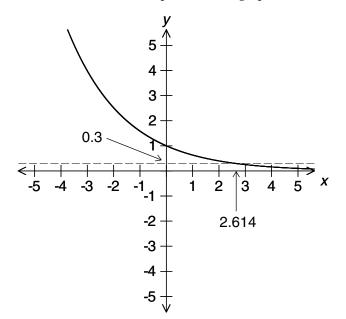
c Determine the average daily increase in the weight of the organisms over this period, correct to two decimal places.
 3 marks

Average daily increase = $\frac{N(7) - N(4)}{7 - 4}$ = $\frac{28.2515}{3}$ = 9.42 thousand/day

d Find the number of days, correct to the nearest day, when the number of organisms is 100000. 2 marks

CAS: SOLVE N(t) = 100 for t. t = 9.5 After 9 days.

QUESTION 16


Total 7 marks

- **a** Solve $10^{-0.2x} = 0.3$, giving the answer in the form $a \log_{10} \left(\frac{10}{h}\right)$. 3 marks
 - $-0.2x = \log_{10} 0.3$ $x = -\frac{1}{0.2} \log_{10} \left(\frac{3}{10}\right)$ $= 5 \log_{10} \left(\frac{3}{10}\right)^{-1}$ $= 5 \log_{10} \left(\frac{10}{3}\right)$

b Give an approximate value for this answer, correct to three decimal places. 1 mark

Using CAS: 2.614

c Sketch the graph of $y = 10^{-0.2x}$ on the axes provided. Locate the solution to part **a** on the graph. **2 marks**

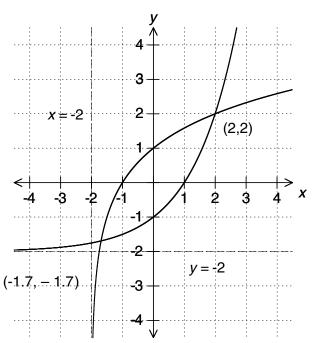
d Hence, find{ $x: 10^{-0.2x} > 0.3$ }, correct to three decimal places. 1 mark

x < 2.614

QUESTION 17 Total 11 marks Consider the function $f: \mathbf{R} \to \mathbf{R}$ where $f(x) = 2^x - 2$.

a State the domain and range of f^{-1} , the inverse of f. 2 marks

Domain of f^{-1} : x > -2 or $x \in (-2, \infty)$; range of f^{-1} : $x \in \mathbb{R}$


b Find the rule of f^{-1} .

2 marks

 $x = 2^{y} - 2$ $x + 2 = 2^{y}$ $y = \log_{2} (x + 2)$

c Write an equation to find the points of intersection between f and f^{-1} . Solve the equation, correct to one decimal place. 3 marks

Three choices: f(x) = x or $f^{-1}(x) = x$ or $f(x) = f^{-1}(x)$ Using CAS: As f^{-1} includes log to the base 2, it may be easier to use f(x) = x, so solve $2^x - 2 = x$ for x. x = -1.7, 2.0 **d** Sketch the graph of f and f^{-1} on the set of axes provided. Label any x and y intercepts. Draw and write the equation of any asymptotes. 4 marks

QUESTION 18 Total 9 marks A family of parabolas has the equation y = (x + 1) (x - a), where *a* is a positive number.

- **a** Expand the brackets. Hence, write the equation in the form $y = x^2 + bx + c$. 1 mark
 - $y = x^{2} + x ax a$ = $x^{2} + (1 - a)x - a$
- **b** Using y = (x + 1)(x a), find the coordinates of the turning point and the values of the *x* intercepts in terms of *a*. 5 marks

The x intercepts are x = -1, a. The x value of the turning point is $\frac{a-1}{2}$ (midpoint of x intercepts). The y value is: $y = \left(\frac{a-1}{2} + 1\right) \left(\frac{a-1}{2} - a\right)$ $= -\frac{(a+1)^2}{4}$ (using CAS).

c Write the equation of the family of graphs when *a* = {0, 1, 2}. Which one of these is an even function? 3 marks

```
a = 0; y = x(x + 1)

a = 1; y = (x - 1)(x + 1) = x^2 - 1 ∴ even function

a = 2; y = (x - 2)(x + 1)
```