Section A: Technology free. 53 marks Section B: CAS technology assumed. 37 marks Suggested time: 90 minutes

Section A: Short answer and extended response questions. Technology free.

Specific instructions to students

- Answer all questions in the spaces provided.
- A decimal approximation will not be accepted if an **exact** answer is required to a question.
- In questions where more than one mark is available, appropriate working **must** be shown.

QUESTION 1

a Evaluate $\lim_{x \to -1} \frac{2x^2 - 2}{x + 1}$.

Total 7 marks 2 marks

 $\lim_{x \to -1} \frac{2(x^2 - 1)}{x + 1}$ = $\lim_{x \to -1} \frac{2(x - 1)(x + 1)}{x + 1}$ = $\lim_{x \to -1} 2(x - 1), x \neq -1$ = -4

b The curve with equation $y = -\frac{1}{2}x^2$ has points *P* and *Q*, where x = 2 and x = 2 + h, respectively.

i Find the y values of P and Q. **2 marks**

$$y_{p} = -\frac{1}{2} \times 2^{2} = -2$$
$$y_{0} = -\frac{1}{2}(2 + h)^{2}$$
$$= -\frac{1}{2}(4 + 4h + h^{2})$$
$$= -2 - 2h - \frac{1}{2}h^{2}$$

ii Find the gradient of the line joining *P* and *Q*.

2 marks

$$m_{PQ} = \frac{-2 - 2h - \frac{1}{2}h^2 + 2}{2 + h - 2}$$
$$= \frac{h\left(-2 - \frac{1}{2}h\right)}{h}$$
$$= -2 - \frac{1}{2}h, h \neq 0$$

iii Hence, find the gradient at *P*.

Gradient at $P = \lim_{h \to 0} \left(-2 - \frac{1}{2}h \right) = -2$

QUESTION 2

Find the derivative of $y = 3x^2 + \frac{2}{x} - \sqrt{x} + 1$.

$$y = 3x^{2} + 2x^{-1} - x^{\frac{1}{2}} + \frac{dy}{dx} = 6x - 2x^{-2} - \frac{1}{2}x^{-\frac{1}{2}} = 6x - \frac{2}{x^{2}} - \frac{1}{2\sqrt{x}}$$

QUESTION 3

For the curve with equation $f(x) = \frac{x^3}{3} - \frac{3}{2}x^2 - 4x + 2$, find f'(2).

1

 $f'(x) = x^2 - 3x - 4$ f'(2) = 4 - 6 - 4 = -6

QUESTION 4 a Differentiate $y = \frac{1}{2}(x - 2)^2$. Total 4 marks 1 mark

3 marks

 $y = \frac{1}{2}x^2 - 2x + 2$ $\frac{dy}{dx} = x - 2$

b Find the coordinates of the point on the graph of $y = \frac{1}{2}(x - 2)^2$ whose tangent is parallel to the line with equation 4x - y = 16. 3 marks

Equation of line: y = 4x - 16. Gradient of line: m = 4. $\frac{dy}{dx} = x - 2 = 4$ x = 6 $y = \frac{1}{2}(6 - 2)^2 = 8$ The gradient of the curve is 4 at the point (6, 8).

QUESTION 5

a Expand $(x - 1)^2 (x + 1)$.

Total 13 marks 1 mark

 $(x - 1)(x^{2} - 1) = x^{3} - x - x^{2} + 1 = x^{3} - x^{2} - x + 1$

b For $f(x) = (x - 1)^2 (x + 1)$, find when f'(x) = 0. Hence find the coordinates of any stationary points of the graph of f(x). 5 marks

 $f'(x) = 3x^{2} - 2x - 1$ $3x^{3} - 2x - 1 = 0$ (3x + 1)(x - 1) = 0 $x = -\frac{1}{3}, 1.$ When $x = -\frac{1}{3}, f(x) = \left(-\frac{4}{3}\right)^{2} \left(\frac{2}{3}\right) = \frac{32}{27}$ x = 1, f(x) = 0stationary points are $\left(-\frac{1}{3}, \frac{32}{27}\right)$ and (1, 0).

c Find the nature of the stationary points. **2** marks

 $x < -\frac{1}{3}$, f'(x) is positive $-\frac{1}{3} < x < 1$, f'(x) is negative x > 1, f'(x) is positive at $x = -\frac{1}{3}$, f(x) is a local maximum at x = -1, f(x) is a local minimum

d State the values of the *x* and *y* intercepts. **2** marks

```
Solve f(x) = 0. x intercepts are -1 and 1; y intercept is 1.
```

e Sketch the graph of f(x) on the axes provided.

QUESTION 6

Find the absolute maximum and absolute minimum for $f: [-1, 4] \rightarrow \mathbf{R}, f(x) = 3x^2 - x^3$. 4 marks

 $f'(x) = 6x - 3x^2 = 0$ 3x(2 - x) = 0 x = 0, 2 f(0) = 0 f(2) = 4 Stationary points are (0, 0) and (2, 4). f(-1) = 4 4 is the absolute maximum. f(4) = -16 -16 is the absolute minimum.

QUESTION 7

Total 5 marks 3 marks

$$\int (x^{\frac{1}{2}} + 1) dx = \frac{2}{3}x^{\frac{3}{2}} + x + c$$

a Find the antiderivative of $\sqrt{x} + 1$.

b Evaluate
$$\int_{1}^{2} (3-x) dx$$
.

2 marks

$$\overline{\left[3x - \frac{1}{2}x^{2}\right]_{1}^{2}} = \left[3 \times 2 - \frac{1}{2} \times 2^{2}\right] - \left[3 \times 1 - \frac{1}{2} \times 1^{2}\right]$$
$$= 4 - 2\frac{1}{2} = 1\frac{1}{2}$$

QUESTION 8

a Calculate the shaded area shown in the diagram.

3 marks

Total 6 marks

$$\int_{0}^{2} (-x^{2} + x + 2) dx = \left[-\frac{x^{3}}{3} + \frac{x^{2}}{2} + 2x \right]_{0}^{2}$$
$$= \left[-\frac{8}{3} + 2 + 4 \right] - [0]$$
$$= \frac{10}{3}$$

b Find the equation of the curve, y = F(x), where f(x) = 2x - 3 and where F(x) passes through the point (1, 4). 3 marks

$$F(x) = \int (2x - 3)dx$$

$$F(x) = x^{2} - 3x + c$$

$$F(1) = 1 - 3 + c = 4$$

$$c = 6$$

$$F(x) = x^{2} - 3x + 6$$

QUESTION 9

Total 9 marks

a Sketch the graph of $y = f(x) = (x + 1)^2 (x - 3)$. (Do not find stationary points.) 3 marks

b Hence, solve $(x + 1)^2 (x - 3) \ge 0$.

3 marks

From the graph: x = 1 and $x \ge 3$

c f(x) is translated 3 units in the *y* direction to give g(x). Write the equation of g(x), the image of f(x). 1 mark

g(x) = f(x) + 3 $= (x + 1)^2 (x - 3) + 3$

d Sketch the graph of g(x) on the set of axes in part **a**. 2 marks

Section B: Multiple-choice questions. CAS technology assumed.

Specific instructions to students

- A correct answer scores 1, and an incorrect • answer scores 0.
- Marks are not deducted for incorrect answers.
- No marks are given if more than one answer is given.
- Choose the alternative which most correctly answers the question and mark your choice on the multiple-choice answer section at the bottom of each page, as shown in the example below.

USE PENCIL ONLY

Use pencil only.

1 A B C 🖉 E

The values of *x* where $\frac{dy}{dx} \ge 0$ for the graph of $y = \frac{1}{2}(x-4)(1-x)$ are: **A** $x \le 2\frac{1}{2}$ **B** $x > 2\frac{1}{2}$ **C** $x \ge 2\frac{1}{2}$ **D** 1 < x < 4**E** $1 \le x \le 4$

QUESTION 11

During a brief storm, water flows into a storage tank according to the formula $V = t^2 (10 - t), 0 \le t \le 10$, where *V* is the volume in litres at time *t* minutes. The instantaneous rate of change of the volume of water entering the tank when t = 5 is:

- **A** $20t + 3t^2 L/min$
- **B** 125 L/min
- **C** 200 L/min
- **D** 25 L/min

E
$$\frac{10}{3}t^3 - \frac{1}{4}t^4$$
 L/min

OUESTION 12

The graph $f(x) = x^3 - bx + c$ has stationary points when *x* is:

A 0 or $\pm \sqrt{b}$ $\frac{b}{3}$ B $\mathbf{C} \frac{\sqrt{3b}}{3}$ **D** $\pm \sqrt{3b}$ **E** 0

QUESTION 13

An object moving along a straight line has its displacement, x m, from a fixed point O, given by the equation $x = 2t^2 - t$, $t \ge 0$. The velocity of this object would then have the equation:

A
$$v = 3t^2$$

B $v = 3t$
C $v = 4t - 1$
D $v = 2t - 1$
E $v = \frac{2t^3}{3} - \frac{t^2}{2} + c$

QUESTION 14

The graph of y = f(x) is shown. Which graph best represents $\frac{dy}{dx}$, the derivative function?

0	NE AI	NSW	ER PE	R LI	NE	USE PENCIL ONLY						
10	А	В	С	D	Ε	12	Α	В	С	D	Ε	
11	Α	В	С	D	Ε	13	Α	В	С	D	E	

Section B: Extended response questions. CAS technology assumed.

Specific instructions to students

- Answer **all** questions in the spaces provided.
- In questions where more than one mark is available, appropriate working **must** be shown.

QUESTION 15

Total 10 marks

The graph shown in the diagram is of the form $f(x) = ax^3 + bx^2 + cx + d$. The point (2, 4) is a stationary point of the graph, which also passes through (-1, -3) and the origin.

a Write an equation for f'(x).

1 mark

 $f'(x) = 3ax^2 + 2bx + c$

b List four simultaneous equations to evaluate *a*, *b*, *c* and *d*. 4 marks

f(0) = 0: d = 0 f(2) = 4: 8a + 4b + 2c + d = 4 f(-1) = -3: -a + b - c + d = -3f'(2) = 0: 12a + 4b + c = 0

c Use these four equations to form a matrix equation.Hence, or otherwise, find the values of *a*, *b*, *c* and *d*.3 marks

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 8 & 4 & 2 & 1 \\ -1 & 1 & -1 & 1 \\ 12 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -3 \\ 0 \end{bmatrix}$$

Using CAS: $a = -\frac{2}{9}, b = -\frac{1}{9}, c = \frac{28}{9}, d = 0$

d Find the exact values of the coordinates of the second stationary point. 2 marks

Using CAS: SOLVE f'(x) = 0. Solutions are $x = 2, -\frac{7}{3}$. $f\left(-\frac{7}{3}\right) = -5\frac{10}{243}$. Coordinates of second point: $\left(-2\frac{1}{3}, -5\frac{10}{243}\right)$

QUESTION 16

Total 12 marks

The position of a particle moving in a straight line relative to a point *O* is given by $x(t) = t^3 - 7t^2 + 8t + 16$, where *x* metres is its position at time *t* seconds.

a Write the velocity, *v*, and acceleration, *a*, in terms of *t*. **2** marks

 $v(t) = 3t^2 - 14t + 8$ a(t) = 6t - 14

- b What is the initial position, velocity and acceleration of the particle?3 marks
 - x(0) = 16 m v(0) = 8 m/s $a(0) = -14 \text{ m/s}^2$

c When is the particle at rest?

2 marks

Using CAS: SOLVE $3t^2 - 14t + 8 = 0$. Solution: $t = \frac{2}{3}$, 4

d Find the position of the particle when it is at rest. 2 marks

 $x\left(\frac{2}{3}\right) = \frac{500}{27} = 18\frac{14}{27} \text{ m}$ x(4) = 4 m

e Sketch the graph of the velocity against time and mark the displacement of the particle between x = 3 and x = 4. 3 marks

QUESTION 17

A rectangular box has dimensions as shown.

a Express the volume of the box, $V \text{ cm}^3$, in terms of *x*. 1 mark

$$V(x) = x(12 - 2x)(9 - 2x)$$

b Sketch the graph of *V* against *x* over a suitable domain. State the domain. 4 marks

Domain:
$$x \in \left(0, 4\frac{1}{2}\right)$$

c State the maximum volume of the box and the value of *x* at which it occurs. Give answers correct to two decimal places.
 2 marks

From the graph: $V = 81.87 \text{ cm}^3$ when x = 1.70 cm

d Find $\frac{dV}{dx}$. Hence, find the exact value of the maximum volume. 3 marks

Using CAS: $\frac{dV}{dx} = 12x^2 - 84x + 108$ Maximum volume when $\frac{dV}{dx} = 0$. Using CAS: SOLVE $12x^2 - 84x + 108 = 0$. Solution: $x = \frac{7 - \sqrt{13}}{2}$, as $x \in \left(0, 4\frac{1}{2}\right)$. $V\left(\frac{7 - \sqrt{13}}{2}\right) = 35 + 13\sqrt{13}$