Test 1

QUESTION 12

Using (2, 1), B = -2 and C = 1 $y = a(x - 2)^3 + 1$ Using (0, 5), $5 = a(0 - 2)^3 + 1$ $a = -\frac{1}{2}$ ∴ E

QUESTION 14

$$(x - 3)^{3} = \frac{1}{2}$$
$$x - 3 = \sqrt[3]{\frac{1}{2}}$$
$$x = 3 + \sqrt[3]{\frac{1}{2}}$$
$$x = 3 + \frac{\sqrt[3]{\frac{1}{2}}}{\sqrt[3]{2}}$$

∴В

Test 2

QUESTION 11

The domain is $x \in [-2, 4)$, the range is $y \in [1, 4)$ and the gradient is $\frac{1}{2}$. \therefore B

QUESTION 12

Using CAS: graph f(x), find minimum value of $-\frac{1}{4}$. \therefore E

QUESTION 13

Using CAS: define f(x). f(x - 1) - f(x) \therefore A

QUESTION 14

For maximal domain,

 $x + 1 \ge 0$ $x \ge -1$ The domain is [-1, ∞). ∴ D

QUESTION 15

 $y = \sqrt{5 - x^2}$ is a semi-circle $x = \pm 1, y = 2$, a many-to-one function. \therefore B

Test 3

QUESTION 11

 $PQ = [-2 \times -1 + 1 \times 0 + 3 \times 4]$ = [14] ∴ D

QUESTION 12

Dimension of AB = $(2 \times 2)(2 \times 3) = 2 \times 3$ \therefore B

QUESTION 13

The dimension of the original matrices should be (3×3) , (3×1) and (3×1) . A is undefined, C gives (1×3) , the LHS of D is (1×3) and RHS is (3×1) . E does not give the correct equations.

∴ B

QUESTION 15

speed = $\frac{9-0}{0-3}$ = -3 m/s \therefore D

Test 4

QUESTION 11

There are 13 hearts in the pack, including the ace of hearts plus three more aces, making 16 cards. Probability is $\frac{16}{52} = \frac{4}{13}$.

∴ В

QUESTION 12

There are five salad sandwiches in the box. Probability is $\frac{5}{12}$.

∴ E

QUESTION 13

 $Pr(P \cup Q) = Pr(P) + Pr(Q) - Pr(P \cap Q)$ = 0.35 + 0.4 - 0.25 = 0.5 ∴ C

QUESTION 14

$$Pr(P|Q) = \frac{Pr(P \cap Q)}{Pr(Q)}$$
$$= \frac{0.25}{0.4}$$
$$= 0.625$$

∴ C

QUESTION 15

Since $Pr(P) \times Pr(Q) \neq Pr(P \cap Q)$, *P* and *Q* are not independent events.

Since $Pr(P) + Pr(Q) \neq Pr(P \cup Q)$, *P* and *Q* are not mutually exclusive.

	Р	Ρ'	
Q	$\Pr(P \cap Q) = 0.25$	$\Pr(P' \cap Q) = 0.15$	Pr(<i>Q</i>) = 0.4
<i>Q'</i>	$\Pr(P \cap Q') = 0.1$	$\Pr(P' \cap Q') = 0.5$	Pr(<i>Q</i> ′) = 0.6
	Pr(<i>P</i>) = 0.35	$\Pr(P') = 0.65$	

From Karnaugh table, E is correct.

Test 5

QUESTION 7

The first place can be filled in 7 ways, the second in 6, the third in 5 . . . thus $\frac{7!}{1!} = 7!$

∴ C

QUESTION 8

The fiction can be arranged in 3! ways and the non-fiction in $4! = 3! \times 4! = 144$ $\therefore D$

QUESTION 9

Select 3 from $15 = {}^{15}C_3 = \frac{15!}{3! \times 12!}$

∴ E

QUESTION 10

Arranging any of the five letters = $8 \times 7 \times 6 \times 5 \times 4 = 6720$. Ending in a vowel means the last place can be filled in three ways, and the other places in seven, then six, then five, then four ways = $7 \times 6 \times 5 \times 4 \times 3 = 2520$. Probability = $\frac{3}{8}$. \therefore C

QUESTION 11

If any four books are selected, $\binom{11}{4} = 330$.

If two of each are selected, $\binom{6}{2} \times \binom{5}{2} = 150$.

Probability $=\frac{150}{330}=\frac{5}{11}$.

∴ A

Test 6

QUESTION 10

Using CAS: 33°C. ∴ C

QUESTION 11

Least value when $x \to \infty$, thus $2 \times 10^{-x} \to 0$, $f(x) \to -1$ or, using technology, work from the graph. \therefore D

QUESTION 12

$$3^{2x} = 3^{1}$$
$$2x = 1$$
$$x = \frac{1}{2}$$
$$\therefore B$$

QUESTION 13

Vertical asymptote is x = a, where *a* is positive. There are no reflections in either axis.

∴ E

QUESTION 14

```
log_{2}(1 - x) = 3
1 - x = 2<sup>3</sup>
x = 1 - 2<sup>3</sup>
= -7
∴ D
```

Test 7

QUESTION 10

From the graph, four asymptotes. $\therefore E$

QUESTION 11

The amplitude is *a*; the vertical translation is *c*. The range is [c - a, c + a]. \therefore C

QUESTION 12

From the graph, there are eight solutions. \therefore D

QUESTION 13

From the graph: 0, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, π , $\frac{4\pi}{3}$, $\frac{5\pi}{3}$, 2π . \therefore B

Test 8

QUESTION 10

From the graph, $x \le 2\frac{1}{2}$.

QUESTION 11

Instantaneous rate:

$$V = 10t^{2} - t^{3}$$

$$\frac{dV}{dt} = 20t - 3t^{2}$$

$$t = 5, \frac{dV}{dt} = 25 \text{ L/min}$$

∴ D

QUESTION 12

Equation of derivative: $\frac{dy}{dx} = 3x^2 - b$. For stationary points: $\frac{dy}{dx} = 0$. $3x^2 - b = 0$ $x = \pm \frac{\sqrt{3b}}{3}$ $\therefore D$

QUESTION 13

$$v = \frac{dx}{dt} = 4t - 1$$

$$\therefore C$$

QUESTION 14

$$x < 0, \frac{dy}{dx} \text{ is positive;}$$

$$x = 0, \frac{dy}{dx} = 0;$$

$$0 < x < 3,$$

$$\frac{dy}{dx} \text{ is positive;}$$

$$x = 3, \frac{dy}{dx} = 0,$$

$$x > 3, \frac{dy}{dx} \text{ is negative.}$$

$$\therefore C$$

Test 9

QUESTION 11

Midpoint: $\frac{x-8}{2} = -1$ $\frac{y+4}{2} = 8$ 6 + 12 = 18x = 6 y = 12 $\therefore A$

QUESTION 12

Time = $\frac{\text{distance}}{\text{speed}}$. Total time (hours) for 10 laps = $7 \times \frac{x}{35} + 3 \times \frac{x}{15} = \frac{48}{60}$, where *x* km is the length of one circuit. *x* = 2 km. \therefore D

QUESTION 13

 $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ $\therefore E$

QUESTION 14

Turning point is (k, k). Graph will touch x axis when k = 0. \therefore A

QUESTION 15

The centre is the midpoint between (2, 3) and (-4, 3): (-1, 3); the radius is midway between (2, 3) and (-4, 3): 3 units. The equation is $(x + 1)^2 + (y - 3)^2 = 9$. \therefore D

QUESTION 16

Since f(x) = f(-x) for $f(x) = 1 - x^2$, it is not a one-one function.

∴ C

QUESTION 17

The reflection in the x axis is followed by a translation of -1 from the y axis.

∴В

QUESTION 18

Four choose backstroke. Probability is $\frac{4}{20} = \frac{1}{5}$. \therefore E

QUESTION 19

General shape is $y = a - Mx^2$.

Using (b, 0),
$$0 = a - b^2 M$$
.
 $M = \frac{a}{b^2}$
Thus $y = a - \frac{a}{b^2} x^2$
 $= a \left(1 - \left(\frac{x}{b}\right)^2\right)$

∴ E

QUESTION 20

The equation of the image is $y = 2\sqrt{1 - x}$. The *y* intercept is $y = 2\sqrt{1}$

= 2.

∴ A

Test 10

QUESTION 10

The equation is $y = -2^{-x} + 1$. \therefore B

QUESTION 11

$$x - 1 = a^b$$
$$x = 1 + a^b$$
$$\therefore A$$

QUESTION 12

$$x = \log_a (b - y)$$
$$a^x = b - y$$
$$y = b - a^x$$
$$\therefore E$$

QUESTION 13

$$\cos(\theta) = \pm \sqrt{1 - \sin^2(\theta)}$$
$$= \pm \sqrt{1 - \frac{1}{9}}$$
$$= \pm \sqrt{\frac{8}{9}} = \pm \frac{2\sqrt{2}}{3}$$
Since $\frac{\pi}{2} \le \theta \le \pi$, $\cos(\theta) = -\frac{2\sqrt{2}}{3}$.
 \therefore D

QUESTION 14

Find points of intersection between the graphs of $y = 2^{-x} - 1$ and $y = \sin(4x)$, $0 \le x \le 2\pi$. There are nine points of intersection and nine solutions. \therefore E

QUESTION 16

$$f'(x) = 2x + \frac{2}{x^3}$$

 $f'(-1) = -2 + \frac{2}{-1} = -4.$
∴ C

QUESTION 17

Positive gradient from R to T \therefore B

QUESTION 18
Area from *Q* to *S*:
$$-\int_{\alpha}^{S} f(x) dx = \int_{s}^{\alpha} f(x) dx$$
.
Area from *S* to *U*: $\int_{s}^{U} f(x) dx$.
Total area: $\int_{s}^{\alpha} f(x) dx + \int_{s}^{U} f(x) dx$.
 \therefore B

QUESTION 19

The transition matrix is $T = \begin{bmatrix} 0.85 & 0.35 \\ 0.15 & 0.65 \end{bmatrix}$. The equation is $T^4S_0 = \begin{bmatrix} 0.85 & 0.35 \\ 0.15 & 0.65 \end{bmatrix}^4 \times \begin{bmatrix} 80 \\ 20 \end{bmatrix} = \begin{bmatrix} 71 \\ 29 \end{bmatrix}$. Thus, 71 are expected to pass the test in four weeks.

.:. C