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Question 3 
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b. ( ) ( )xexh tan=  

( ) ( ) ( )xexxh tan2sec' =     (Chain rule)    (1 mark) correct derivative 
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(1 mark) correct answer 

(Quotient rule) (1 mark) –note that because the 

question is worth 1 mark and the 

question hasn’t asked for the 

simplification, the following 

lines are not required but are 

shown here to give an example 

of how you would go on to 

simplify if you were asked to 
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Question 4 

 

a. i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       (1 mark) – correct graph of ( )xgy =  and labelling of two points 

ii. Since the graph of ( )
2

1

x
xf =  has been dilated by a factor of 2 from  

the y-axis, we replace the x with 
2

x
 to obtain the rule for ( )xgy = . 
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(1 mark) correct graph including 2 labelled points 

 

 ii. Equation of vertical asymptote is 1=x .         (1 mark) 

 

 iii. Equation of horizontal asymptote is 0=y .        (1 mark) 
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Question 5 

 

This is a binomial distribution with 3  and 90 =⋅= np . 

Let X represent the number of females offered a scholarship this year. 
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Question 6 

 

X 0 1 2 5 10 

( )xX =Pr  0.1 a 0.4 b 0.2 

 

 

a. Since X is a discrete random variable, 

 
0 ⋅1+ a +0 ⋅ 4 + b+0 ⋅2 =1

a + b = 0 ⋅ 3     − 1( )
 

 Also, since ( ) ,53 ⋅=XE  

 
0×0 ⋅1+1× a +2×0 ⋅ 4 +5× b+10×0 ⋅2 = 3 ⋅5

a +5b = 0 ⋅ 7      − 2( )
 

 

2( )− 1( ) gives 4b = 0 ⋅ 4

b = 0 ⋅1

In 1( ) gives a = 0 ⋅2

 

(1 mark) correct method attempted 

(1 mark) correct answers 

 

 

b. The median of X is 2 because 50% of the distribution is greater than 2 and 50% is less 

than 2. 

(1 mark) 
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Question 7 
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b. Method 1 

The graph of ( ) 
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on because the period of the graph is given by 16
8
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The graph of ( )xhy =  is the graph of ( )xgy =  that has been reflected in the x-axis 

translated 4 units to the left, and translated 1 unit down.         (1 mark) 

The graph of ( ) ( ) 14
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x = −4, x =12 and x = 28. For [ ]20,0∈x  the required value of x is 12.      (1 mark) 

 

Method 2 

The minimum occurs when ( ) 2−=xh  because the amplitude is 1 and there is a 

translation of 1 unit down. 
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For [ ]20,0∈x , x =12 .            (1 mark) 
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At x = 4  and at 20=x there is a maximum. 

At x =12 , there is a minimum.           (1 mark) 
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Question 8 
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So the gradient of the tangent at 3 is 
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Question 10 

 

The graphs of ( ) ( )xgyxfy ==  and  intersect when 
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The graphs intersect when x = 2.           (1 mark) 
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Question 11 

 

a. Let       ( ) S= wellsleepsHarry Pr  

  

( )
( )

( ) 'play wellt doesn’Harry Pr

 wellplaysHarry Pr

' wellsleept doesn’Harry Pr

P

P

S

=

=

=

 

Using a tree diagram, 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 mark) 

( ) ( ) ( )

530

350180

50706030

'PrPrPr

⋅=

⋅+⋅=

⋅×⋅+⋅×⋅=

∩+∩= PSPSP

 

(1 mark) 

 

b. 

( ) ( )
( )

47

12

47.0

12.0

350120

120

50704030

4030

'Pr

'Pr
'Pr     

=

=

⋅+⋅
⋅

=

⋅×⋅+⋅×⋅
⋅×⋅

=

∩
=

P

PS
PS

 

(1 mark) 

(1 mark) 

 

0.3

0.7

0.6

0.4

0.5

0.5

'S

S

P

P

'P

'P



 

 

© THE HEFFERNAN GROUP 2008                  Maths Methods 3 & 4 Trial Exam 1 solutions 

9

Question 12 

 

a. To show: ( ) ( )11 gf = ; that is the graphs intersect at the point where x =1. 
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b. From the graph, ( ) ( ) [ ]bxxfxg ,1for  ∈> . 
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( )xh  is a max/min when ( ) 0' =xh . 
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Since this is outside the domain of [ ]bx ,1∈  we reject this value of x. 

So the maximum occurs at  
2

31+
=x . 

(1 mark) including the rejection of x =
1− 3
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