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SECTION 1 
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SECTION 1 
 
Question 1   Answer  C 
 

the average value is 1 b

a

y y dx
b a

=
− ∫  

( )
2

2

2 0

x
1 2 33sin 2 1.5

0 4
y x dx

π

π

π
π

= = =
− ∫  

 
 

Question 2   Answer  E 
 

Let  ( ) ( ) ( ) ( )( )22sin then sinf x x f x h x h= + = +  

( ) ( ) ( ) ( )
( )( ) ( )2 2

0 0

sin sin
lim and lim
h h

k h kf x h f x
f x f k

h h→ →

+ −+ −
′ ′= =  

 

Question 3   Answer  E 
 

The function  [ ] ( ): 0, 2f c R f x c x→ = −   is a straight line, now 

( ) ( ) [ ] 10 and so that ran , domf c f c c f c c f −= = − = − =  

interchanging x and y  the inverse is  1 2f x c y− = −      

transposing to make y  the subject    ( )12
2

c xy c x y f x− −
= − = =  

Question 4   Answer  A 
 
the graph of  3y x= +   when reflected in the y-axis becomes 3y x= −  
then translated 2 units to the left becomes 1y x= −  
then translated 3 units up becomes 1 3y x= − +  
 
Question 5   Answer  C 
 

( ) 0.220 tN t e= ,  the average rate is  ( ) ( )3 0
3 0

N N−
−

 

( ) ( ) 0.63 0 20 20 5.48
3 0 3

N N e− −
= =

−
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Question 6   Answer  B 
 

( ) ( ) ( ) ( )3 cos andf x x g x x h x x= = =  

( )( ) ( )( ) ( )
( )( )( ) ( )( ) ( )( ) ( )3

3

cos cos

cos cos cos

g h x h x x

f g h x f x x x

= =

= = =
 

Question 7   Answer  B 
 

( ) 3f x x= ,   and   64 0.5 now 63.5x h x h= − = − = +  

using  ( ) ( ) ( )f x h f x h f x′+ = +  

3 63.5− = ( ) ( )64 0.5 64f f ′− + −  

Question 8   Answer  D 
 

this is just the chain rule, in function form 

( )( )( )d f g x
dx

=  ( ) ( )( )g x f g x′ ′  

 

Question 9   Answer  C 
 

[ ] ( ) ( ) ( )
( )

300sin 3
: 0, where 300 tan 3

cos 3
x

f R f x x
x

π → = =   

The graph crosses the x-axis when ( )sin 3 0x = ⇒  20, , ,
3 3

x π π π=   Option A. is true  

The graph has asymptotes when ( )cos 3 0x = ⇒  5, ,
6 2 6

x π π π
=   Option B. is true 

The range of the graph is R.   Option C. is false 

The period of  ( )tan 3x  is 
3
π  so the graph has three cycles in [ ]0,π   Option D. is true 

The graph has a domain of  [ ]0,π  is its restricted domain. Option E. is true 

Question 10   Answer  B 
 

( ) ( )0 1 1 and 1 sin 1
2 2
af f a f a aπ⎛ ⎞ ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

so the range is  [ ]1,1 a−  
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Question 11   Answer  E 
 

( )

4 2

3

2

4
for turning points

4 8 0

4 2 0

at 0 2

y x x

dy x x
dx
x x

x x

= −

= − =

− =

= = ±

 

from the graph, the 
gradient is negative for 

( ) ( ), 2 0, 2−∞ − ∪  

 

Question 12   Answer  D 
 

( ) ( )1 2 3 2 6 10x y q px y− = + =  
A.  is true if  4p = − , there is no unique solution. 
B.  is true if 4p ≠ − , there is a unique solution, the two lines intersect in a unique 

point. 
C. is true, if  4 and 5p q= − = −  the two equations are the same line, so that there is 

an infinite number of solutions. 
E. is true, if  4 and 5p q= − ≠ −  the two equations, represent straight parallel lines, 

with different y-intercepts, so there is no solution. 
D. is false. 
 
Question 13   Answer  D 
 

( )( ) [ ] ( ) ( ) ( )
0 00

0
1 0

a

aa a
f x dx x f x dx a f x dx A a− = − = − + = −∫ ∫ ∫  

 
Question 14   Answer  C 
 

( ) ( ) ( )4sin 2 4sin 2 2cos 2dy x y x dx x c
dx

= ⇒ = = − +∫    to find c, use 5 0
3

y π⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

( ) ( )

100 2cos 1 0 1
3

2cos 2 1 now when 0 2cos 0 1 3

c c c

y x x y

π⎛ ⎞= − + = + = ⇒ = −⎜ ⎟
⎝ ⎠

= − − = = − − = −
 

 

x

y

-4 -3 -2 -1 0 1 2 3 4

-6

-4

-2

0

2

4

6
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Question 15   Answer  C 
 

let   2 2
1 2 1 2and ify kx y x bx c y y= = + + =   2 2kx x bx c= + +    

( )2 2 0x b k x c+ − + =  the number of roots, depends upon the discriminant  

( )2 24b k cΔ = − −  
A. and B. for the graphs to touch or to be a tangent,  0 2 2b k c b k cΔ = ⇒ − = ± = ±  
both A. and B. are true. 
For the graphs to intersect at two distinct points  0Δ >  

( )2 20 4 2 and 2b k c b k c b k cΔ > ⇒ − > ⇒ − > − < −  
2 and 2k b c k b c> + < −  option D. and E. are true.  

For the graphs to not intersect   0Δ <  
( )2 20 4 2 and 2b k c b k c b k cΔ < ⇒ − < ⇒ − < − > −   or   

2 and 2k b c k b c< + > −   or  2 2b c k b c− < < +   C. is false. 
 
Question 16   Answer  B 
 

• ( ) 0 at 1 and 1f x x x′ = = − =  

• ( ) 0 for 1 and 1 1f x x x′ < < − − < <  

• ( ) 0 for 1f x x′ > >  

The graph has a stationary point of inflexion at 
1x = −  and a minimum at 1x = . 

 

Question 17   Answer  E 
 

( ) ( ) ( ) ( )Pr Pr Pr PrA B A B A B∪ = + − ∩   this is always true. 

( )Pr
2
pA B∩ =    then  ( ) 3 2 3Pr 1

2 2
p pA B −

∩ = − =    

Option A. is true 
 

If  A and B are mutually exclusive then ( )Pr 0A B∩ =   

so  that  ( ) ( ) ( )Pr Pr Pr 2A B A B p∪ = + =   Option B. is true.     
 

If  A and B are independent then ( ) ( ) ( )Pr Pr .PrA B A B∩ =   

( ) ( ) ( ) ( ) ( ) ( )2Pr Pr Pr Pr Pr 2 2A B A B A B p p p p∪ = + − = − = −   Option C. is true.     

If  A and B are independent then ( ) ( )
( )

( ) ( )
( )

Pr Pr .Pr
Pr /

Pr Pr
A B A B

A B p
B B
∩

= = =  Option D. is true. 

 If  A and B are mutually exclusive then ( ) ( )
( )

Pr
Pr / 0

Pr
A B

A B
B
∩

= =   Option E. is false.     

 A  A   
B 2

p  2
p  p  

B 2
p  3

21 p−  1 p−

 p  1 p−   

x 

y 

   -1                       1 
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Question 18   Answer  D 
 

Since it is a discrete random variable, the probabilities add to one, so that 1a b+ =  
( ) ( ) ( ) ( )Pr 1 1E X x X x a b b a= = = − + = −∑  

( ) ( ) ( ) ( )2 22 2 Pr 1 1E X x X x a b a b= = = − + = +∑  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) ( )

2 22

2 2

2

since 1 and 1

1 1 2 1 1 4 4

4 4 4 1

VAR X E X E X a b b a a b b a

VAR X a a a

VAR X a a a a

= − = + − − + = = −

= − − = − − +

= − = −
 

Question 19   Answer  A 
 

 
 

( )
( )
( )

for 0

for 0
0 elsewhere

k a x x a

f x k a x a x

− ≤ ≤⎧
⎪

= + − ≤ ≤⎨
⎪
⎩

 

The total area under the two triangles is one. 
2

2

1 12 . 1
2

A a ka ka k
a

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
Question 20   Answer  A 
 

Given that  ( ) ( )Pr PrZ c c Z c a< = − < < =  

( ) ( )

( ) ( )

Pr 0 Pr 0
2

1Pr Pr 0.5
2 2

aZ c c Z

a aZ c Z c

< < = − < < =

+
≥ − = ≤ = + =

 

 

Question 21   Answer  A 
 

The higher probabilities ( ) ( ) ( )Pr 8 0 Pr 9 0 Pr 10 0X X X= ≈ = ≈ = ≈  are small, and 
the graph is right ( or positively skewed ) so the probability of a success on any one trial 
p is very small, 0.5p  , 0.3p =  is the correct choice.   
 
 

Question 22   Answer  D 
 

want  BR or RB 

( ) ( ) ( ) ( ) ( ) ( ) ( )
x x

2Pr
1 1 1

b r r b brBR RB
b r b r b r b r b r b r

+ = + =
+ + − + + − + + −

 

 
END OF SECTION 1 SUGGESTED ANSWERS

x

y 

ka 

a a−  
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SECTION 2 
 

Question 1 
 

a. ( ) ( )2 2 4f x x f= = , A  is the point ( )2, 4 ,  

also on 3 2y ax bx cx d= + + +   substitute   
 ( )1 4 8 4 2a b c d= + + +        A1  

 C  is the point  ( )4,0  

 ( )2 0 64 16 4a b c d= + + +       A1  
at A the join is smooth, the gradients are equal, so that 

22 3 2 at 2dy x ax bx c x
dx

= = + + =   

( )3 4 12 4a b c= + +        A1 

at B, we have a maximum 0 at 3dy x
dx

= =  

 ( )4 0 27 6a b c= + +        A1  
 

 
b. the four equations become the one matrix equation  AX C=  where  

8 4 2 1 4
64 16 4 1 0
12 4 1 0 4
27 6 1 0 0

a
b

A X C
c
d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    the solution for X is  M1 

  
1

1

8 4 2 1 4 2
64 16 4 1 0 13
12 4 1 0 4 24
27 6 1 0 0 16

X A C

−

−

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

      A1   

 

so that   2 13 24 16a b c d= − = = − =   
  
 

c. ( )
2

3 2

for 0 2
2 13 24 16 for 2 4

x x
f x

x x x x

⎧ ≤ ≤⎪= ⎨
− + − + ≤ ≤⎪⎩

 

 at  B  ( )3 3 7x f= = , completing the table of values   A1  
  

x 0 1 2 3 4 
 y 0 1 4 7 0 
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x

y

0 1 2 3 4
0

2

4

6

8

 
 
using left (end-point ) rectangles  ( )0 1 2 3L h y y y y= + + + ( )1 0 1 4 7 12= + + + =   

using right (end-point ) rectangles  ( )1 2 3 4R h y y y y= + + + ( )1 1 4 7 0 12= + + + =   

both give the area of the grassed region as 12 2m     A1  
the area of the rectangular region is 28 2m , so that, 
16 2m  is the area of the trees and shrubs, the ratio of areas 12 :16  or 

 3 : 4           A1  
  

d.i. ( )2 42 3 2

0 2
2 13 24 16A x dx x x x dx= + − + − +∫ ∫      A1 

    

  ii. 2113 m
3

A =          A1 
 

e.i. the point P is on 2 and 0 2y x p= < < , so that P has coordinates   

( )2,P p p   and  D  is the point ( )3,0D      A1 
Let  s  be the distance from P to D, the path length 

( ) ( )2 43s d PD p p= = − +        A1 

   ii. for the path length s, to be a minimum ( )
( )

3

2 4

4 2 3
0

2 3

p pds
dp p p

− −
= =

− +
  M1  

34 6 2 0 since 0 2p p p− − = < <  
 1p =           A1 
 min 5s =          A1 
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Question 2 

a. i. ( ) 2 4cos
2
xf x ⎛ ⎞′ = + ⎜ ⎟

⎝ ⎠
        A1 

    ii. maximum value of the gradient is  6 and occurs when 

 cos 1
2
x⎛ ⎞ =⎜ ⎟

⎝ ⎠
         M1 

 0 , 4x π=   now,   ( ) ( )0 0 and 4 8f f π π= = the coordinates are  

 ( ) ( )0,0 and 4 ,8π π         A1 
 
b. for stationary points ( ) 0f x′ =  

 

4cos 2
2

1cos
2 2

4 8,
3 3

x

x

x π π

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

⎛ ⎞ = −⎜ ⎟
⎝ ⎠

=

         

 4 8 2 88sin 4 3
3 3 3 3

f π π π π⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 the maximum coordinate is 4 8, 4 3
3 3
π π⎛ ⎞+⎜ ⎟

⎝ ⎠
    A1 

 8 16 4 168sin 4 3
3 3 3 3

f π π π π⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 the minimum coordinate is   8 16, 4 3
3 3
π π⎛ ⎞−⎜ ⎟

⎝ ⎠
    A1 

       
c. at  ( ) ( )2 2 4 sin 4x fπ π π π π= = + =  

  ( ) ( )2 2 4cos 2f π π′ = + = −       A1  
 the equation of the tangent is 
 ( )4 2 2y xπ π− = − −  
 2 8y x π= − +          A1 
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d. correct graph, shape, restricted domain [ ]0, 4π ,  

maximum at ( )4 8, 4 3 4.2,15.3
3 3
π π⎛ ⎞+ ≈⎜ ⎟

⎝ ⎠
  

minimum at   ( )8 16, 4 3 8.4,9.8
3 3
π π⎛ ⎞− ≈⎜ ⎟

⎝ ⎠
     A1 

correct tangent, on either side of the curve and passing through ( )4 ,0π  A1 
            
   

x

y

0 π 2π 3π 4π 5π

0

5

10

15

20

25

 
 
 

e. 1cos
2 2
x⎛ ⎞ = −⎜ ⎟

⎝ ⎠
 

1 1 22 cos 2
2 2 3

44 where
3

x k k

x k k J

ππ π

ππ

− ⎛ ⎞= ± − = ±⎜ ⎟
⎝ ⎠

= ± ∈

      A1 
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Question 3 

 
a. correct graph and  ( ] [ )0 for ,1 and 4,y = −∞ ∞     A1 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. want   ( ) ( )
( )

Pr 3
Pr 3 2

Pr 2
T

T T
T

>
> > =

>
      M1 

( )
( )

4

3

2

81 7Pr 2
252 2 1

T dt
t

> = =
+

⌠
⎮
⌡

      A1 

 ( )
( )

4

3

3

81 4Pr 3
492 2 1

T dt
t

> = =
+

⌠
⎮
⌡

 

 ( ) 100Pr 3 2
343

T T> > =        A1 

 

c. 7~ Bi 4,
25

Y n p⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 ( ) ( )Pr 1 1 Pr 0Y Y≥ = − =        M1 

 ( )
47Pr 1 1 1

25
Y ⎛ ⎞≥ = − −⎜ ⎟

⎝ ⎠
 

 ( )Pr 1 0.731Y ≥ =         A1 
 

d. ( )
( )

4

3

1

81
2 2 1

tE T dt
t

=
+

⌠
⎮
⌡

       A1 

 ( ) 1.75E T =          A1

t

y

0 1 2 3 4 5
0

1

2

31,
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

14,
18

⎛ ⎞
⎜ ⎟
⎝ ⎠
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e. 
( )3

1

81 1
22 2 1

m

dt
t

=
+

⌠
⎮
⌡

        A1 

 
( )2

1

81 1
28 2 1

m

t

⎡ ⎤
− =⎢ ⎥

+⎢ ⎥⎣ ⎦
         

 
( )2

1 1 4 since 1 4
9 812 1

m
m

− = − < <
+

     M1  

 1 9 1
2 5

m ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

 1.5 yearsm =          A1 
  
f. ( )2 2~ N ?, ?X μ σ= =  times in months  

 ( )Pr 25 0.18X < =  

 
25 0.915μ

σ
−

= −         M1  

 ( )1 0.915 25σ μ− = −         
 

( )Pr 57 0.04X > =  

 
57 1.75μ

σ
−

=          M1 

 ( )2 1.75 57σ μ= −         

 
 now subtract equations  ( ) ( )2 1−  

 2.665 32σ =  
 12σ = months         A1  
 substituting gives x57 1.75 12 36μ = − =  months    A1  
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Question 4 
 

a. we require 1 0 2
2
x x+ > ⇒ > −  

 domain  ( )2,D = − ∞         A1 
 

b. 3log 1
2e
xy ⎛ ⎞= +⎜ ⎟

⎝ ⎠
            3

2
dy
dx x

=
+

         

   

since  0dy
dx

≠ ⇒     no turning points     A1  

 

c. ( ) ( )13log 2
2ef x x⎛ ⎞= +⎜ ⎟

⎝ ⎠
      

• dilation by a factor of  3 parallel to the y-axis ( or away from the x-axis ) A1 

• dilation by a factor of  2 parallel to the x-axis ( or away from the y-axis ) A1 

• translation by 2 units to the left parallel to the x-axis    A1 
      ( or away from the y-axis ) 
 

d.i. ( ) 22 3log 1 3log and
2 2e e

u uf u −⎛ ⎞ ⎛ ⎞− = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( ) 22 3log 1 3log
2 2e e

v vf v −⎛ ⎞ ⎛ ⎞− = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

 ( ) ( )2 2 3log 3log 3log
2 2 4e e e
u v uvf u f v ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − = + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   M1 

 since  0 and 0u v> >  

 ( ) 3log 1 3log
2 4e e

auv b uvf auv b +⎛ ⎞ ⎛ ⎞+ = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 1
2 2 4
b auv uv

+ + =  

 12
2

b a= − =         A1 

 ii. ( ) ( ) 3log 1 3log 1
2 2e e
u uf u f u ⎛ ⎞ ⎛ ⎞+ − = + + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 ( ) ( )
2 2

3log 1 1 3log 1
2 2 4 4e e
u u u uf u f u f

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞+ − = + − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  M1 

provided that   
2

21 0 or 4
4

u u− > <  

 ( )2 or 2, 2u u< ∈ −        A1 
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e. 3log 1
2e
xf y ⎛ ⎞= +⎜ ⎟

⎝ ⎠
   interchanging x and y 

 1 3log 1
2e
yf x− ⎛ ⎞= +⎜ ⎟

⎝ ⎠
     rearranging for y    M1  

 ( )1 32 1
x

f x e− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
        A1 

 1dom ranf f R− = =  must give domain since a function is required   
  
f. both graphs pass through the origin ( )0,0 , the graphs are reflection in  

the line y x=  
 the graph of  f  has 2x = −  as a vertical asymptote    A1  

 the graph of  1f −  has 2y = −  as a horizontal asymptote   A1 

        
 

x

y

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

 
 
 
 

2x = −  

2y = −  

y x=

( ) 3log 1
2e
xf x ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

( )1 32 1
x

f x e− ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 



Mathematics Methods  CAS  Trial Examination 2  2008  Solutions   Section 2          Page 17 

© KILBAHA PTY LTD 2008 

g. i. the coordinate is ( )2.288, 2.288  

 since p satisfies  ( ) ( )1f x f x x− = =   or 

 33log 1 2 1
2

p

e
p e p

⎛ ⎞⎛ ⎞+ = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

so that  2.288p =         A1 

 
g. ii. let the area bounded by the graph of  f, the x-axis and the line x p=  be  

  ( )1
0

0

3log 1
2

p
p

e
xA f x dx dx⎛ ⎞= = +⎜ ⎟

⎝ ⎠
⌠
⎮
⌡∫  

 let the area bounded by the graph of  1f − , the x-axis and the line x p=  be  

  ( )1 3
2

0
0

2 1

p
p x

A f x dx e dx− ⎛ ⎞
= = −⎜ ⎟

⎝ ⎠

⌠
⎮
⌡

∫  

 
 but  2

1 2A A p+ =          A1 
( the area of the square of side length p) 

( )2 2 1
1 2

0

p

A p A p f x dx−= − = − ∫       

2 3
1

0

2 1

p
x

A p e dx
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

⌠
⎮
⌡

       A1 

2 3
1 2 3 3

p

A p e p
⎡ ⎤⎛ ⎞

= − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

        

2 3
1

2 3
1

2
1

2
1

6 2 6

3 2 1 2

3 2

p

p

A p e p

A p e p

A p p p

A p p

= − + +

⎛ ⎞⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
= − +

= −

       A1 
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