MATHEMATICAL METHODS (CAS)

Units 3 & 4 – Written examination 2

2008 Trial Examination

SOLUTIONS

SECTION 1: Multiple-choice questions (1 mark each)

Question 1

Answer: D

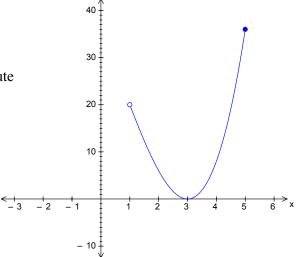
Explanation:

Factorised $y = x^2(4 - x^2) = x^2(2 - x)(2 + x)$ giving TP at x = 0, intercepts at x = -2, 2 curve reflected in x axis

Question 2

Answer: B

Explanation: From graph min range = 0 and substitute endpoint x = 5 for max = 36



Answer: B

Explanation:

Solving this equation yields the two general solutions:

$$x = \frac{\sqrt{3}\pi(6n+1)}{9} \quad (1) \quad \text{and } x = \frac{\sqrt{3}\pi(6n-1)}{9} \quad (2), \text{ where } n \in \mathbb{Z}.$$

Therefore, using (1): $x = \frac{\sqrt{3}\pi}{9}, \ \frac{7\sqrt{3}\pi}{9}, \ \frac{13\sqrt{3}\pi}{9}, \ \frac{19\sqrt{3}\pi}{9}$
Also, using (2): $x = \frac{5\sqrt{3}\pi}{9}, \ \frac{11\sqrt{3}\pi}{9}, \ \frac{17\sqrt{3}\pi}{9}, \ \frac{23\sqrt{3}\pi}{9}.$

Arranging the solutions in order, the seventh solution must be $\frac{19\sqrt{3\pi}}{9}$.

Question 4

Answer: D

Explanation:

To solve, set up the matrix equation:

$$\begin{bmatrix} 2 & 1 & -3 & 0.5 & -0.2 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -3 & 2 & -0.3 & 0.1 \\ 0.3 & -2 & 7 & -1 & 0.1 \\ 1 & -3 & -4 & -5 & -2 \end{bmatrix} \times \begin{bmatrix} a \\ b \\ c \\ d \\ e \end{bmatrix} = \begin{bmatrix} -14.24 \\ 9.3 \\ 12.39 \\ 32.3 \\ -3.3 \end{bmatrix}.$$
$$a = 0.1$$
$$b = -1.2$$

This yields the solution: c = 3.9 . Therefore, c = 39a is correct. d = -2.4e = 1.7

Answer: B

Explanation:

When $f(x) = 3x^2 - 7x - 0.5$ and $g(x) = 3x^2 + 0.25x - \sqrt{2}$: $g(x-1) \approx 3x^2 - 5.75x + 1.34$, so $\sqrt{3}g(x-1) \approx 5.2x^2 - 10.0x + 2.31$. Therefore, $f(\sqrt{3}g(x-1)) \approx 81x^4 - 310.5x^3 + 333.32x^2 - 68.54x - 0.64$

Question 6

Answer: A

Explanation:

Rearrange equation $y = e^{2(x-2)} - 2$ makes dilation factor and translations more obvious

Question 7

Answer: B

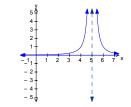
Explanation:

Question 8

Answer: C

Explanation:

Need to restrict domain to make function one-to-one From options given x < 5 or $x \in (-\infty, 5)$



Answer: D

Explanation:

Reflected in *x* axis, amplitude 4 therefore a = -4, period = 4 therefore $n = \frac{\pi}{2}$, translated down 3 units so c = -3

Question 10

Answer: E

Explanation:

Using CAS technology (or the product rule) you find that $f'(x) = \frac{e^{4hx}x^{\frac{1}{2}}}{3}\left(\frac{3}{2} + 4hx\right)$.

Question 11

Answer: D

Explanation:

Solving for $\int_{\frac{\pi}{2}}^{\sqrt{7}} (x^3 - 7x^2 + xe^x - 2) dx$, we get (approximately) -5.143. Therefore, the average value is found by $\frac{1}{\sqrt{7} - \frac{\pi}{2}} \times -5.143 \approx -4.784$.

Question 12

Answer: E

Explanation:

(2, 6) co-ordinate where gradient: therefore a local minimum x = 2

2008 MATHMETH EXAM 2

Question 13

Answer: C

Explanation:

Graph not smooth at x = 0, x = 3 gradient negative x < 0, gradient changes from positive to zero to negative in 0 < x < 3, gradient positive x > 3 therefore must be C.

Question 14

Answer: A

Explanation:

$$(6x+1) \div (2x-3)$$

$$(2x-3)\overline{)6x+1}$$

$$(2x-3)\overline{)6x+1}$$

$$(2x-3)\overline{)6x+1}$$

$$(2x-3)\overline{)6x+1}$$

$$(2x-3) + 10$$

$$f(x) = \int (3 + \frac{10}{2x-3})dx$$

$$(2x-3) + c$$

$$(3x+5\log_e(2x-3) + c)$$

Question 15

Answer: E

Explanation:

$$\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$$
$$\frac{dV}{dr} = \frac{4(3)\pi r^2}{3}$$
$$\dots = 4\pi r^2$$
$$\frac{dr}{dV} = \frac{1}{4\pi r^2}$$
$$\therefore \frac{dr}{dt} = -\frac{3}{4\pi r^2}$$

Answer: B

Explanation:

The only correct option provided for dealing with negative areas. Must integrate between x values and graphs swap at x = 0

Question 17

Answer: D

Explanation:		A	<i>A'</i>
	В	0.35	0.3
	В'	0.25	0.1
		0.6	0.4

The following is also suggested:

$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

.....0.9 = 0.6 + 0.65 - Pr(A \cap B)
.....0.9 = 1.25 - Pr(A \cap B)
.....0.35 = Pr(A \cap B)

0.65 0.35 1

Question 18

Answer: B

Explanation: (1)
$$np = 12$$
, (2) $npq = 4$
 $\frac{npq}{np} = \frac{4}{12}$
(2) \div (1) $= q = \frac{1}{3} \therefore p = \frac{2}{3}$
 $n\left(\frac{2}{3}\right) = 12 \therefore n = 18$

Question 19

Answer: C

Explanation:

The graph of the derivative has three x-intercepts, so the original function's graph must have three stationary points. Also, f'(x) < 0 for x < -1, so the graph of f(x) must have a negative gradient for x < -1. Therefore, **C** is the appropriate option.

Answer: C

Explanation:

 $T \sim Bi(150, k)$ and $q = 1 - k \therefore {}^{150}C_{15}(k)^{15}(1-k)^{135}$

Question 21

Answer: A

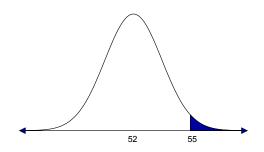
Explanation:

$$\int_{0}^{\frac{\pi}{4}} (x^{2}\sqrt{2}\cos(x))dx - \left(\int_{0}^{\frac{\pi}{4}} (x\sqrt{2}\cos(x))dx\right)^{2} = 0.0499$$

Question 22

Answer: B

Explanation:



normalcdf(55, 10^{99} ,52, 2) = 0.0668 Therefore 7%

SECTION 2: Analysis Questions

Question 1

a. From the *y*-intercept,
$$d = 20$$
. M1

Set up three simultaneous equations with the three *x*-intercepts:

$$x = -5.550 \Rightarrow -170.954a + 30.803b - 5.550c = -20$$

When $x = 3.097 \Rightarrow 29.705a + 9.591b + 3.097c = -20$. Therefore, set up the
 $x = 17.453 \Rightarrow 5316.310a + 304.607b + 17.453c = -20$
matrix equation: $\begin{bmatrix} -170.954 & 30.803 & -5.550\\ 29.705 & 9.591 & 3.097\\ 5316.310 & 304.607 & 17.453 \end{bmatrix} \times \begin{bmatrix} a\\ b\\ c \end{bmatrix} = \begin{bmatrix} -20\\ -20\\ -20 \end{bmatrix}$ and solve, yielding
 $a = 0.067 \approx \frac{1}{15}, b = -1$ and $c = -4$. M1

Therefore,
$$f(x) = \frac{x^3}{15} - x^2 - 4x + 20$$
 A1

A3

c.
$$A = \int_{-5.802}^{3.246} \left(\frac{x^3}{15} - x^2 - x + 20 - (e^{0.1(x+10)} - 5))dx - \int_{3.246}^{17.941} \left(\frac{x^3}{15} - x^2 - x + 20 - (e^{0.1(x+10)} - 5))dx - \left[\frac{x^4}{60} - \frac{x^3}{3} - \frac{4x^2}{2} + 25x - 10e^{0.1(x+10)}\right]_{-5.802}^{3.246} - \left[\frac{x^4}{60} - \frac{x^3}{3} - \frac{4x^2}{2} + 25x - 10e^{0.1(x+10)}\right]_{3.246}^{17.941}$$
$$= 156.521 + 569.806$$
$$= 726.327km^2$$
$$M2 + A1$$

d.

 $V = 156.521 \times 0.025$... = 3.913025 km³ ... = 3.913025 × 10⁶ = 3 913 025 ML

A1

e. Find point on curve
$$f(5) = \frac{125}{15} - 25 - 20 + 20 = -16\frac{2}{3}$$

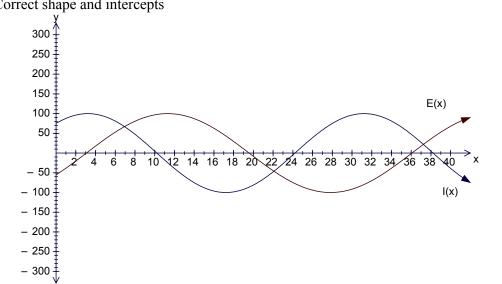
 $f'(x) = \frac{3x^2}{15} - 2x - 4$
Find gradient $f'(5) = \frac{25}{5} - 10 - 4$
....... $= -9 \therefore m_n = \frac{1}{9}$
Find equation of line:
 $y = \frac{1}{9}x - 17\frac{2}{9}or..9y = x - 155$
M2 + A1

f. points of intersection on calculator (5, -16.67), (16.69, -15.37) $d = \sqrt{1.3^2 + 11.69^2}$ distance between $\dots = \sqrt{138.35}$... = 11.76km

M1 + A1Total 15 marks

Question 2

a. Correct shape and intercepts

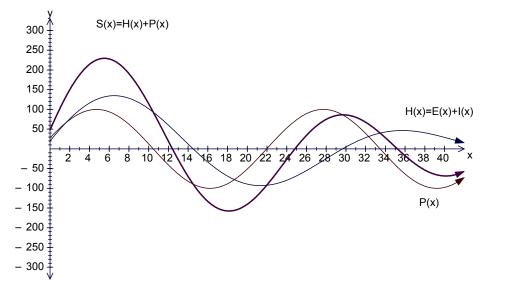


b. Critical days I(x) = 0, x = 3, 19, 36 therefore 3^{rd} Oct, 19^{th} Oct High days I(x) = 100, x = 11 therefore 11^{th} October Low days I(x) = -100, x = 27 therefore 27^{th} October May be slight discrepancies if values read from graphs

A3

A2

c. Correct shape, show important points, x = 0, points of intersection



d. Best Date maximum of S(x) 5th October, Worst Date minimum of S(x) 18th October Again, may vary if read from graphs

A2

A2

e. Find point of intersection between y = S(x) and y = 105 giving (1.051, 105) and (10.205, 105) therefore best dates are between 1st and 10th of October.

M1 + A1 Total 11 marks

Question 3
9.2500 =
$$Ae^0$$
 : $A = 9.2500$
5.9724 = 9.2500 e^{-9k}
a. 0.64566 = e^{-9k}
 $-0.4375 = -9k$
 $\therefore k = 0.0486 \& A = 9.2500$
M2 + A1
 $R = 9.2500e^{-0.0486 \frac{1}{24}}$
b. ... = 9.2313
 \therefore amount..decayed = 9.2500 - 9.2313 = 0.0187g
M1 + A1
4.625 = 9.2500 $e^{-0.0486t}$
 $-0.6931 = -0.0486t$
 $t = 14.2622 : .14days..6hours$
M1 + A1

© The Specialised School For Mathematics Pty. Ltd. 2008 (TSSM)

.

d.
$$D_0 = 5.2700g$$

 $D = 5.2700e^{-0.0309t}$ Find point of intersection of y = D(t) and y = R(t), giving (31.7849, 1.9736). Therefore,... i. After 31 days 19 hours ii. 1.9736g of both Raybon and Decabon

M1 + A1 Total 9 marks

M1 + A1

Question 4

a.
$$Pr(NNNWW) = \frac{7}{8} \times \frac{7}{8} \times \frac{7}{8} \times \frac{1}{8} \times \frac{1}{8} = 0.0105$$

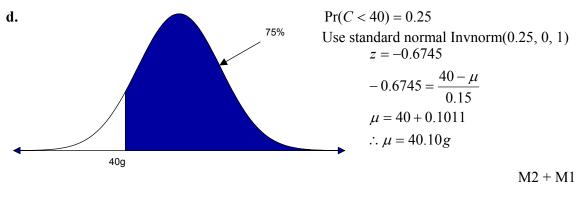
b.
$$C \sim Bi(50, \frac{1}{8})$$

 $Pr(X \ge 1) = 1 - Pr(X < 0)$
 $= 1 - binompdf(50, \frac{1}{8}, 0)$
 $= 0.9987$

M1 + A1

$$\Pr(W \le 10 \middle| W \ge 1) = \frac{\Pr(1 \le W \le 10)}{\Pr(W \ge 1)}$$

c. ... = binomcdf (50, $\frac{1}{8}$, 10) - binompdf (50, $\frac{1}{8}$, 0)
... = 0.9579 M2 + A1



e. Pr(C < 40) = normalcdf(-1EXP(99), 40, 40.1, 0.15)..... = 0.2525

> M1 + A1 Total 12 marks

a.

$$\int_{0}^{2} (k(x^{2} + 1))dx = 1$$

$$k \left[\frac{x^{3}}{3} + x \right]_{0}^{2} = 1$$

$$k \left[\frac{8}{3} + 2 \right] = 1$$

$$k \left(\frac{14}{3} \right) = 1$$

$$k = \frac{3}{14}$$

$$M1 + A1$$

b.

$$\int_{0}^{m} (\frac{3}{14}(x^{2}+1))dx = 0.5$$

$$\frac{m^{3}}{3} + m = 2\frac{1}{3}$$

Graph $y = 2\frac{1}{3}$ and $y = \frac{m^{3}}{3} + m$ find the points of intersection (1.4063, 2.3333). Therefore, the median is 1.4063
M1 + A1

c. mode is max of graph at
$$x = 2$$
 A1

d.
$$E(X) = \int_{0}^{2} (\frac{3}{14}x(x^{2}+1))dx$$

..... = 1.2857 M1 + A1

e.
$$\Pr(X < 1.2857) = \int_{0}^{1.2857} (\frac{3}{14}(x^2 + 1))dx$$

= 0.4273 A1

f.
$$\operatorname{var}(\mathbf{X}) = \int_0^2 \left(\frac{3}{14}x^2(x^2+1)\right) dx - (1.2857)^2$$

= 1.9429 - 1.6530
= 0.2899 A1

g.
$$\sigma_x = \sqrt{\text{var}(\mathbf{X})} = \sqrt{0.2899} \approx 0.5384$$
 A1
Total 11 marks