Surrey I Ph Fr info@the www.the	THE CFFERNAN GROUP P.O. Box 1180 Hills North VIC 3127 one 03 9836 5021 ax 03 9836 5025 heffernangroup.com.au heffernangroup.com.au	MATHS METHODS 3 & 4 TRIAL EXAMINATION 2 SOLUTIONS 2009
1. C	9. B	17. E
2. A	10. D	18. A
3. D	11. B	19. D
4. E	12. D	20. B
5. A	13. C	21. E
6. D	14. B	22. E
7. A	15. C	
8. A	16. A	
Section 1	- Multiple-choice sol	itions

Section 1 – Multiple-choice solutions

Question 1

E(X) = mean of X $= -2 \times 0 \cdot 3 + -1 \times 0 \cdot 2 + 0 \times 0 \cdot 4 + 1 \times 0 \cdot 1$ $= -0 \cdot 7$ The answer is C.

Question 2

 f^{-1} exists if f is a 1:1 function. Sketch the graph of $y = \sin(2x - \pi)$ for $x \ge 0$.

If $a = \frac{\pi}{4}$, then f is a 1:1 function and f^{-1} exists. The answer is A.

Sketch the function y = |1 - x|.

The rate of change is the gradient of the function. At x = 2, the gradient = 1. The answer is D.

Question 4

 $y = \sin(e^{2x})$ This is a composite function so use the chain rule.

<u>Method 1</u> – fast way $y = \sin(e^{2x})$ $\frac{dy}{dx} = 2e^{2x}\cos(e^{2x})$ The answer is E.

Method 2

 $y = \sin(e^{2x}) \quad \text{Let } u = e^{2x}$ $= \sin(u) \qquad \frac{du}{dx} = 2e^{2x}$ $\frac{dy}{du} = \cos(u)$ $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \text{ (Chain rule)}$ $= \cos(u) \cdot 2e^{2x}$ $= 2e^{2x} \cos(e^{2x})$ The answer is E.

©THE HEFFERNAN GROUP 2009

2

This is a binominal distribution with n = 8 and p = 0.1. $\Pr(X \ge 2) = 1 - \Pr(X < 2)$ $= 1 - \{ \Pr(X = 0) + \Pr(X = 1) \}$ $=1-\{{}^{8}C_{0}(0\cdot1)^{0}(0\cdot9)^{8}+{}^{8}C_{1}(0\cdot1)^{1}(0\cdot9)^{7}\}$ =1-(0.430467...+0.382637...)= 0 · 186896... = 0.1869 (to four decimal places)

3

The answer is A.

Question 6

$$\int \left(\frac{2}{x+1} + \sin(2x)\right) dx$$

= $2\log_e |x+1| - \frac{1}{2}\cos(2x) + c$
The answer is D.

Question 7

$$\int_{0}^{4} (2-5f(x))dx = \int_{0}^{4} 2dx - 5\int_{0}^{4} f(x)dx$$

$$= [2x]_{0}^{4} - 5 \times 3$$

$$= 8 - 0 - 15$$

$$= -7$$
The answer is A.
Question 8
Sketch the function.
At $x = \frac{\pi}{12}$,
 $4\cos(2x)$

$$= 4\cos\left(\frac{\pi}{6}\right)$$

$$= 4 \times \frac{\sqrt{3}}{2}$$

$$= 2\sqrt{3}$$
From the diagram,
 $r_{f} = [-4, 2\sqrt{3}]$

The answer is A.

→ x

$$Pr(X < 5 | X < 10) = \frac{Pr(X < 5 \cap X < 10)}{Pr(X < 10)}$$
$$= \frac{Pr(X < 5)}{0 \cdot 5}$$
$$= \frac{0 \cdot 00621}{0 \cdot 5}$$
$$= 0 \cdot 01242$$

The answer is B.

Question 10

$$y = x^{4} - 5x^{2} + 4$$

= (x² - 4)(x² - 1)
= (x - 2)(x + 2)(x - 1)(x + 1)

4

The graph is symmetrical about the *y*-axis. Use your calculator to find the minimum turning points. They occur at (-1.58114, -2.25) and, by symmetry at (1.58114, -2.25). The gradient is positive for $x \in (-1.5811..., 0) \cup (1.5811..., \infty)$ The closest answer is D.

Question 11

Average rate of change
$$= \frac{f(2) - f(1)}{2 - 1}$$
$$= \log_e(5) - \log_e(3)$$
$$= \log_e\left(\frac{5}{3}\right)$$

The answer is B.

Option A is incorrect because *h* is discontinuous at x = 1 and x = 3. Option B is incorrect because *h* does not exist at x = 3. Option C is incorrect because $h(x) \le 0$ for $x \in [-3,0]$. Option D is correct because h(x) exists at x = 1. Option E is incorrect because h'(1) does not exist. This is because the limits for h'(x) from the left and right hand side of x = 1 are not equal. The answer is D.

Question 13

 $e^{2x} - 2e^{x} = 0$ $e^{x} (e^{x} - 2) = 0$ $e^{x} = 0 \text{ or } e^{x} - 2 = 0$ For $e^{x} = 0$, there is no real solution. For $e^{x} = 2$ $x = \log_{e}(2)$ The answer is C.

Question 14

$$\frac{dV}{dt} = 5$$

$$V = \frac{4}{3}\pi r^{3} \text{ (from formula sheet)}$$

$$\frac{dV}{dr} = 4\pi r^{2}$$

$$\frac{dr}{dt} = \frac{dr}{dV} \cdot \frac{dV}{dt}$$

$$= \frac{1}{4\pi r^{2}} \cdot 5$$

$$= \frac{5}{4\pi r^{2}}$$

The answer is B.

Do a quick sketch.

A dilation by a factor of 3 from the x-axis changes the rule y = tan(2x) to become

$$\frac{y}{3} = \tan(2x)$$
$$y = 3\tan(2x)$$

A reflection in the *x*-axis changes the rule to $-y = 3\tan(2x)$

$$y = -3\tan(2x)$$

Note that the domain is not affected by these two transformations. The answer is C.

7

Question 16

Since we have a probability density function,

$$\int_{-\infty}^{\infty} f(x)dx = 1$$
$$\int_{0}^{1} \frac{x^2}{k} dx = 1$$
$$\frac{1}{k} \left[\frac{x^3}{3} \right]_{0}^{1} = 1$$
$$\left[\frac{x^3}{3} \right]_{0}^{1} = k$$
$$\frac{1}{3} - 0 = k$$
$$k = \frac{1}{3}$$

The answer is A.

Question 17

$$f(x) = \frac{h(x)}{\log_{e}(2x)}, x > 0$$

$$f'(x) = \frac{\log_{e}(2x)h'(x) - \frac{1}{x}h(x)}{(\log_{e}(2x))^{2}}$$
 (6)
The answer is E.

Quotient rule)

Question 18

$$\int_{0}^{\frac{\pi}{8}} (\cos(2x) - \sec^{2}(2x))dx$$

$$= \left[\frac{1}{2}\sin(2x) - \frac{1}{2}\tan(2x)\right]_{0}^{\frac{\pi}{8}}$$

$$= \frac{1}{2}\left\{\left(\sin\left(\frac{\pi}{4}\right) - \tan\left(\frac{\pi}{4}\right)\right) - \left((\sin(0) - \tan(0)\right)\right\}$$

$$= \frac{1}{2}\left\{\left(\frac{1}{\sqrt{2}} - 1\right) - 0\right\}$$

$$= \frac{1}{2}\left(\frac{1}{\sqrt{2}} - 1\right)$$

The answer is D.

Question 20

For a stationary point of inflection to occur f'(x) = 0. This only occurs at x = -b and at x = d. To the left of x = -b, f'(x) > 0 and to the right of x = -b, f'(x) > 0 so we have a stationary point of inflection at x = -b.

Note that to the left of x = d, f'(x) > 0 and to the right of x = d, f'(x) < 0So we have a local maximum at x = d. The answer is B.

$$\begin{split} f(x) = & \frac{1}{\sqrt{x-1}}, \text{ has a maximal domain.} \\ \text{That maximal domain is given by} \\ & x-1 > 0 \\ & x > 1 \\ \text{So } d_f = & (1,\infty). \\ f(g(x)) \quad \text{exists iff } r_g \subseteq d_f \\ & \text{So we require } r_g \subseteq & (1,\infty) \end{split}$$

Method 1

The graph of y = x - 1 for $x \in R$ is shown in the diagram on the left below. In order to restrict the range to $(1, \infty)$, we are going to have to restrict the domain to $x \in (2, \infty)$ as shown on the graph on the right below.

Since $r_g \subseteq (1,\infty)$, $d_g \subseteq (2,\infty)$. So $a \neq -2,-1,0$ or 1 So a = 2 is the only possible answer. The answer is E.

 $\frac{\text{Method } 2}{\text{We require } r_g \subseteq (1,\infty)}$ $r_g = (a-1,\infty)$ $a-1 \ge 1$ $a \ge 2$

So a = 2 is the only possible answer.

The answer is E.

Questi	Juestion 1				
a.	The graph of $y = f(x)$ passes through (0,0)				
	so, $0 = e^{a \times 0} - b$				
	$b = e^0$				
	b=1 as required				
_		(1 mark)			
b.	$f(x) = e^{ax} - 1$				
	$f'(x) = ae^{ax}$	(1 mark)			
	$f'(1) = ae^a$				
	Since $f'(1) = 2e^2$ (given)				
	then $a = 2$				
	Note that the amountain of the commutate	(1 mark)			
c.	Method 1	$y = e^{-1} + 1 + 1 + y = -1$.			
	The graph of $y = f(x)$ has undergone a	reflection in the <i>x</i> -axis followed by			
	a translation of 1 unit down. (1 mar	k) – reflection (1 mark) - translation			
	$\frac{\text{Method 2}}{\text{The same had for } f(x)}$				
	The graph of $y = f(x)$ has undergone a reflection in the x-axis (1 marl	translation of 1 unit up followed by a $(1 \text{ mark}) - \text{translation}$			
	ii. Method 1	2			
	After the reflection in the x-axis, the rul	$e y = e^{2x} - 1$ becomes $-y = e^{2x} - 1$ so			
	$y = 1 - e^{2x}.$	(1 mark)			
	After the translation of 1 unit down, $y = 2^{2}$	$1 - e^{2x}$ becomes			
	$y = 1 - e^{2x} - 1 = -e^{2x}$. So $g(x) = -e^{2x}$ Mothod 2	as required. (1 mark)			
	$\frac{\text{Method } 2}{\text{A fter the translation of 1 unit up, the rule}$	$a_{1} = a^{2x} + b_{2} = a^{2x} + 1 + 1$			
	After the translation of 1 unit up, the fu	$e^{y} = e^{-1}$ becomes $y = e^{-1+1}$			
	so $y = e^{-1}$	(1 mark)			
	After the reflection in the x-axis, $y = e^{-2x}$	becomes $-y = e^{-x}$ so $y = -e^{-x}$.			
	So $g(x) = -e^{2x}$ as required.	(1 mark)			
d.	The graphs of $y = f(x)$ and $y = g(x)$ intersect y	vhen			
	f(x) = g(x)				
	$e^{2x} - 1 = -e^{2x}$	(1 mark)			
	$2e^{2x} = 1$	()			
	2~ 1				
	$e^{2x} = \frac{1}{2}$				

$$\log_{e}\left(\frac{1}{2}\right) = 2x$$

$$x = \frac{1}{2}\log_{e}(2^{-1})$$
So $c = -\frac{1}{2}\log_{e}(2)$ (1 mark)

©THE HEFFERNAN GROUP 2009

©THE HEFFERNAN GROUP 2009

a.	i.	Pr(rides on next 5 days)	
		$= 0 \cdot 6^5$	
		= 0.0778 (correct to 4 decimal places)	
			(1 mark)
	□ _{ii.}	This is a binomial distribution with $n = 5, x = 2$ and $p = 0 \cdot 6$.	
		Pr(rides 2 out of next 5 days)	
		$= \Pr(X = 2)$	
		$={}^{5}C_{2}(0\cdot 6)^{2}(0\cdot 4)^{3}$	(1 mark)
		$= 0 \cdot 2304$	(1
			(1 mark)
b.	i.	$\Pr(wwww) = 0 \cdot 4^4$	
		$= 0 \cdot 0256$	(1 1)
			(1 mark)
	□ ii.	$\Pr(wcc) + \Pr(cwc) + \Pr(ccw)$	(1 mark)
		$= 0.4 \times 0.6 \times 0.7 + 0.6 \times 0.3 \times 0.6 + 0.6 \times 0.7 \times 0.3$	(1 mark)
		= 0.402	(1 mark)
			()
	iii.	<u>Method 1</u> Pr(walked on at least 1 of next 3)	
		=1 - Pr(walked zero times out of next 3)	
		$=1 - \Pr(ccc)$	(1 mark)
		$=1-(0\cdot 6\times 0\cdot 7\times 0\cdot 7)$	(1 mark)
		= 0.706	
		Method 2 - use a tree diagram	(1 mark)
	_	Thurs	
		Out	comes
		Wod 04 W W	WW
		wed 0.4	
		Tues 0.4 W	NV G
		0.6 - C W	WC
		W 0.3 W W	C W
		0.4 0.6 C	
		$W \qquad 0.7 \qquad C \qquad W \qquad 0.4 \qquad W \qquad C$	VCC WW
		0.3 W	
			WC
		0.3 W C	C W
		0.7 C	
		0.7	0.0

©THE HEFFERNAN GROUP 2009

Maths Methods 3 & 4 Trial Exam 2 solutions

13

(1 mark) correct linear function and included endpoints for $20 \le t \le 40$ (1 mark) correct marking of function along *t*-axis

ii. From the graph, we see that the mode is 40; that is, the value of t with the highest probability; that is, the highest value of f(t).

(1 mark)

iii. Let
$$m = \text{median}$$

$$\int_{20}^{m} f(t) dt = 0.5$$
(1 mark)

$$\int_{20}^{m} \frac{1}{1000} (t + 20) dt = 0.5$$
(1 mark)

$$\frac{1}{1000} \left[\frac{t^2}{2} + 20t \right]_{20}^{m} = 0.5$$
(1 mark)

$$\left(\frac{m^2}{2} + 20m \right) - (200 + 400) = 500$$
(1 mark)

$$\frac{m^2}{2} + 20m - 1100 = 0$$
(1 mark)

$$m = -70.9902...$$
or $m = 30.9902...$
Since $20 \le m \le 40$, $m = 31$ minutes (to the nearest minute).
(1 mark) correct answer
Total 16 marks

©THE HEFFERNAN GROUP 2009

c.

a. $f(x) = \cos(2x)$ $f'(x) = -2\sin(2x)$

b. The gradient of the tangent is
$$-1$$
 when

$$f'(x) = -1$$

$$-2\sin(2x) = -1$$

$$\sin(2x) = \frac{1}{2}$$

$$x \in \left[0, \frac{\pi}{2}\right]$$

$$\frac{S}{T} = \frac{A}{C}$$

$$2x = \frac{\pi}{6}, \frac{5\pi}{6}$$

$$2x \in [0, \pi]$$

$$x = \frac{\pi}{12}, \frac{5\pi}{12}$$

$$f\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{6}\right)$$

$$f\left(\frac{5\pi}{12}\right) = \cos\left(\frac{5\pi}{6}\right)$$

$$= -\frac{\sqrt{3}}{2}$$
Required points are $\left(\frac{\pi}{12}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{5\pi}{12}, -\frac{\sqrt{3}}{2}\right)$.
(1 mark)

i. Tangent passes through
$$\left(\frac{\pi + \sqrt{3}}{6}, 0\right)$$
 and $\left(0, \frac{\sqrt{3}\pi + 3}{6}\right)$.
Method 1
 $m = \frac{y_2 - y_1}{x_2 - x_1} = \left(\frac{\sqrt{3}\pi + 3}{6} - 0\right) \div \left(0 - \frac{\pi + \sqrt{3}}{6}\right)$
 $= -\left(\frac{\sqrt{3}(\pi + \sqrt{3})}{\pi + \sqrt{3}}\right)$
 $= -\sqrt{3}$ as required (1 mark)

Method 2

Note that the gradient must be negative since the tangent is sloping up to the left.

Gradient of tangent is given by

©THE HEFFERNAN GROUP 2009

ii.
$$f'(x) = -2\sin(2x) = -\sqrt{3}$$
 $x \in \left[0, \frac{\pi}{2}\right]$ (1 mark)
 $\sin(2x) = \frac{\sqrt{3}}{2}$ $2x \in [0, \pi]$
 $2x = \frac{\pi}{3}, \frac{2\pi}{3}$
 $x = \frac{\pi}{6}, \frac{\pi}{3}$

iii.

(1 mark)

The *x*-intercept of the tangent we require is $\frac{\pi + \sqrt{3}}{6} = 0.8122...$

Now $\frac{\pi}{4} = 0.7853...$ From the diagram above, we can see that the tangent we require must pass through the point where $x = \frac{\pi}{6}$. The other possible tangent which passes through the point where $x = \frac{\pi}{3}$, has an *x*-intercept which is less than $\frac{\pi}{4}$ and therefore less than $\frac{\pi + \sqrt{3}}{6}$. (1 mark) $f(x) = \cos(2x)$ $f(\frac{\pi}{6}) = \cos(\frac{\pi}{3})$ $= \frac{1}{2}$ Point of tangency is $(\frac{\pi}{6}, \frac{1}{2})$. (1 mark)

Do a quick sketch of the graph of y = |f(x)|. d.

|f(x)| - a = 0|f(x)| = ae.

The graphs of y = |f(x)| and y = a are shown below.

(1 mark)

For at least one solution $a \in [0,1]$. ii. (1 mark)

From the graphs of y = |f(x)| and $y = \frac{1}{2}$ we see that there is a point of intersection at $x = \frac{\pi}{6}$. The graph of y = |f(x)| is symmetrical about the line $x = \frac{\pi}{4}$. Now $\frac{\pi}{4} - \frac{\pi}{6} = \frac{3\pi}{12} - \frac{2\pi}{12} = \frac{\pi}{12}$ so there is another point of intersection at the point where $x = \frac{\pi}{4} + \frac{\pi}{12} = \frac{3\pi}{12} + \frac{\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{3}$. So $f(x) = \frac{1}{2}$ for $x = \frac{\pi}{6}, \frac{\pi}{3}$.

M

$$\frac{\text{Method } 2}{|f(x)| = \frac{1}{2}}$$

$$f(x) = \pm \frac{1}{2}$$

$$\cos(2x) = \pm \frac{1}{2} \qquad x \in \left[0, \frac{\pi}{2}\right] \qquad (1 \text{ mark})$$

$$2x = \frac{\pi}{3}, \frac{2\pi}{3} \qquad 2x \in [0, \pi]$$

$$x = \frac{\pi}{6}, \frac{\pi}{3}$$

(1 mark)

Total 14 marks

©THE HEFFERNAN GROUP 2009

a. Solve
$$f(x) = 0$$

 $5 \log_e(x-10) = 0$
 $e^0 = x - 10$
 $1 = x - 10$
 $x = 11$
So $a = 11$ as required.

(1 mark)

b. $f(x) = 5 \log_e(x-10)$ Let $y = 5 \log_e(x-10)$ Swap x and y for inverse. $x = 5 \log_e(y-10)$ $\frac{x}{5} = \log_e(y-10)$ $e^{\frac{x}{5}} = y - 10$ $y = e^{\frac{x}{5}} + 10$ $f^{-1}(x) = e^{\frac{x}{5}} + 10$ (1 mark) – correct rule $d_f = [11, 50]$ $r_f = [0, f(50)]$ $= [0, 18 \cdot 44...]$ So $d_{f^{-1}} = r_f$ $= [0, 18 \cdot 4]$ (correct to 1 decimal place)

(1 mark) - correct domain

c. Since the graph of $y = f^{-1}(x)$ is a reflection of the graph of y = f(x) in the line y = x, the floodlit areas north and east are the same.

Total area = $2 \int_{11}^{50} f(x) dx$ = $10 \int_{11}^{50} \log_e(x-10) dx$ = 1086m^2 (to nearest square metre)

(1 mark)

(1 mark)

©THE HEFFERNAN GROUP 2009

d. Find the *x*-coordinates of the points of intersection between y = 15 and y = f(x) and between y = 15 and $y = f^{-1}(x)$. <u>Method 1</u> – by calculator y = 15 and $y = 5\log_e(x-10)$ intersect when x = 30.09 (to 2 decimal places) y = 15 and $y = e^{\frac{1}{5}} + 10$ intersect when $x = 8 \cdot 05$ (to 2 decimal places) So $b \in (8 \cdot 05, 30 \cdot 09)$ or $8 \cdot 05 < b < 30 \cdot 09$.

(1 mark) correct values (1 mark) correct brackets or inequality signs

 $\underline{Method 2} - by hand$

$15 = 5\log_e(x - 10)$	$15 = e^{\frac{x}{5}} + 10$
$3 = \log_e (x - 10)$	$5 = e^{\frac{x}{5}}$
$e^3 = x - 10$	$\log_e(5) = \frac{x}{5}$
$x = 10 + e^3$	$x = 5 \log_e(5)$
$= 30 \cdot 09$ (to 2 dec. pla	aces) = $8 \cdot 05$ (to 2 dec. places)
So $b \in (8.05, 30.09)$ or	$\mathbf{r} \cdot 8 \cdot 05 < b < 30 \cdot 09.$

(1 mark) correct values (1 mark) correct bracket or inequality signs

i. e.

$$T = \sqrt{x^2 + 2500} + \frac{50 - x}{2}$$

$$\frac{dT}{dx} = \frac{1}{2} (x^2 + 2500)^{-\frac{1}{2}} \times 2x - \frac{1}{2}$$

$$= \frac{x}{\sqrt{x^2 + 2500}} - \frac{1}{2}$$

$$= \frac{2x - \sqrt{x^2 + 2500}}{2\sqrt{x^2 + 2500}}$$
 (1 mark)

$$\frac{dT}{dx} = 0 \text{ for minimum.}$$
So $2x - \sqrt{x^2 + 2500} = 0$ (1 mark)
 $2x = \sqrt{x^2 + 2500}$
 $4x^2 = x^2 + 2500$
 $3x^2 = 2500$
 $x = \pm 28 \cdot 8675$
but $x \ge 0$
So $x = 28 \cdot 87$ (correct to 2 decimal places)
(1 mark)

 $T = 68 \cdot 3$ seconds correct to 1 decimal place. ii. (1 mark)

©THE HEFFERNAN GROUP 2009

f. To take the quickest path, Victoria runs to $P(28 \cdot 87,50)$. The straight line from O(0,0) to $P(28 \cdot 87,50)$ is given by $y = \frac{50}{28 \cdot 87}x$. (1 mark) Check whether this intersects with the perimeter of the floodlit area to the north given by $f^{-1}(x) = e^{\frac{x}{5}} + 10$. Graph the two functions. They intersect at the point (10 · 3475...,17 · 9209...) and at the point (11 · 226152,19 · 44259...) so Victoria does enter the floodlit area. (1 mark)

g. The dogs have to run $\sqrt{50^2 + 50^2} = 50\sqrt{2}m$. They run at 7m/sec. It takes the dogs $50\sqrt{2}m \div \frac{7m}{\sec}$ $= \frac{50\sqrt{2}}{7} \sec$ $= 10.1015...\sec$ to get to *H* from *O*. The dogs leave 60 secs after Victoria so they arrive 70.1015...secs after she leaves O(0,0). From part **e. ii.**, the shortest time it takes Victoria to get from *O* to *H* is 68.3 seconds (to 1 decimal place).

So Victoria escapes the dogs; but only just!

(1 mark) Total 15 marks