

 $E(X)$ = mean of X $=-0.7$ $= -2 \times 0 \cdot 3 + -1 \times 0 \cdot 2 + 0 \times 0 \cdot 4 + 1 \times 0 \cdot 1$ The answer is C.

Question 2

 f^{-1} exists if *f* is a 1:1 function. Sketch the graph of $y = sin(2x - \pi)$ for $x \ge 0$.

 \Box

If $a = \frac{\pi}{4}$ $\frac{\pi}{4}$, then *f* is a 1:1 function and f^{-1} exists. The answer is A.

 \Box

 \Box

Sketch the function $y = |1-x|$.

The rate of change is the gradient of the function. At $x = 2$, the gradient = 1. The answer is D.

Question 4

 \Box

 $y = \sin(e^{2x})$ This is a composite function so use the chain rule.

 \Box

 \Box

Method 1 – fast way $y = \sin(e^{2x})$ *dy* $\frac{dy}{dx} = 2e^{2x} \cos(e^{2x})$ The answer is E.

Method 2

 $= 2e^{2x} \cos(e^{2x})$ $=\cos(u) \cdot 2e^{2x}$ $\frac{du}{dx}$ (Chain rule) $\frac{dy}{du} = \cos(u)$ $\sin(u)$ $\frac{du}{dx} = 2e^{2x}$ $y = \sin(e^{2x})$ Let $u = e^{2x}$ *du du dy dx* $\frac{dy}{dx} = \frac{dy}{dx}$. $\frac{dy}{dx}$ = *du* $=\sin(u)$ $\frac{uu}{u}$ The answer is E.

2

This is a binominal distribution with $n = 8$ and $p = 0.1$. $Pr(X \ge 2) = 1 - Pr(X < 2)$ $= 0.1869$ (to four decimal places) $= 0.186896...$ $= 1 - (0.430467... + 0.382637...)$ $= 1 - {^{8}C_0} (0.1)^0 (0.9)^8 + {^{8}C_1} (0.1)^1 (0.9)^7$ $= 1 - {Pr(X = 0) + Pr(X = 1)}$ The answer is A.

3

Question 6

$$
\int \left(\frac{2}{x+1} + \sin(2x)\right) dx
$$

= $2\log_e |x+1| - \frac{1}{2}\cos(2x) + c$
The answer is D.

Question 7

$$
\int_{0}^{4} (2-5f(x))dx = \int_{0}^{4} 2dx - 5\int_{0}^{4} f(x)dx
$$
\n
$$
= [2x]_{0}^{4} - 5 \times 3
$$
\n
$$
= 8 - 0 - 15
$$
\n
$$
= -7
$$
\nThe answer is A.\n\nQuestion 8\nSketch the function.\n\nAt $x = \frac{\pi}{12}$,\n
$$
4\cos(2x)
$$
\n
$$
= 4\cos(\frac{\pi}{6})
$$
\n
$$
= 4 \times \frac{\sqrt{3}}{2}
$$
\n
$$
= 2\sqrt{3}
$$

 $= 2\sqrt{3}$ From the diagram, $r_f = [-4, 2\sqrt{3}]$ The answer is A.

 \Box

3 $\overline{2\pi}$

 $y = 4\cos(2x)$

x

$$
Pr(X < 5 | X < 10) = \frac{Pr(X < 5 \cap X < 10)}{Pr(X < 10)} \\
= \frac{Pr(X < 5)}{0.5} \\
= \frac{0.00621}{0.5} \\
= 0.01242
$$

The answer is B.

Question 10

$$
y = x4 - 5x2 + 4
$$

= (x² - 4)(x² - 1)
= (x - 2)(x + 2)(x - 1)(x + 1)

4

The graph is symmetrical about the *y*-axis. Use your calculator to find the minimum turning points. They occur at $(-1.58114,-2.25)$ and, by symmetry at $(1.58114,-2.25)$. The gradient is positive for $x \in (-1.5811...0) \cup (1.5811...,\infty)$ The closest answer is D.

Question 11

Average rate of change
$$
=\frac{f(2) - f(1)}{2 - 1}
$$

= $\log_e(5) - \log_e(3)$
= $\log_e(\frac{5}{3})$

 \Box

The answer is B.

 \Box

Option A is incorrect because *h* is discontinuous at $x = 1$ and $x = 3$. Option B is incorrect because *h* does not exist at $x = 3$. Option C is incorrect because $h(x) \le 0$ for $x \in [-3, 0]$. Option D is correct because $h(x)$ exists at $x = 1$. Option E is incorrect because $h'(1)$ does not exist. This is because the limits for $h'(x)$ from the left and right hand side of $x = 1$ are not equal. The answer is D.

Question 13

 $e^{x}(e^{x}-2) = 0$ $e^{2x} - 2e^x = 0$ $e^x = 0$ or $e^x - 2 = 0$ For $e^x = 0$, there is no real solution. $x = \log_e(2)$ For $e^x = 2$ The answer is C.

Question 14

$$
\frac{dV}{dt} = 5
$$

\n
$$
V = \frac{4}{3} \pi r^3 \text{ (from formula sheet)}
$$

\n
$$
\frac{dV}{dr} = 4\pi r^2
$$

\n
$$
\frac{dr}{dt} = \frac{dr}{dV} \cdot \frac{dV}{dt}
$$

\n
$$
= \frac{1}{4\pi r^2} \cdot 5
$$

\n
$$
= \frac{5}{4\pi r^2}
$$

The answer is B.

Do a quick sketch.

A dilation by a factor of 3 from the *x*-axis changes the rule $y = tan(2x)$ to become *y*

$$
\frac{y}{3} = \tan(2x)
$$

$$
y = 3\tan(2x)
$$

$$
\qquad \qquad \Box
$$

A reflection in the *x*-axis changes the rule to −*y* = 3tan(2*x*)

$$
y = -3\tan(2x)
$$

Note that the domain is not affected by these two transformations. The answer is C.

 \Box

Since we have a probability density function,

$$
\int_{-\infty}^{\infty} f(x)dx = 1
$$

$$
\int_{0}^{1} \frac{x^2}{k}dx = 1
$$

$$
\frac{1}{k} \left[\frac{x^3}{3} \right]_{0}^{1} = 1
$$

$$
\left[\frac{x^3}{3} \right]_{0}^{1} = k
$$

$$
\frac{1}{3} - 0 = k
$$

$$
k = \frac{1}{3}
$$

The answer is A.

Question 17

$$
f(x) = \frac{h(x)}{\log_e(2x)}, x > 0
$$

$$
\log_e(2x)h'(x) = \frac{1}{x}h(x)
$$

$$
f'(x) = \frac{(\log_e(2x))^2}{(\log_e(2x))^2}
$$
 (6)
The answer is E.

(Quotient rule)

Question 18

$$
\int_{0}^{\frac{\pi}{8}} (\cos(2x) - \sec^2(2x)) dx
$$
\n
$$
= \left[\frac{1}{2} \sin(2x) - \frac{1}{2} \tan(2x) \right]_{0}^{\frac{\pi}{8}}
$$
\n
$$
= \frac{1}{2} \left\{ \left(\sin\left(\frac{\pi}{4}\right) - \tan\left(\frac{\pi}{4}\right) \right) - \left((\sin(0) - \tan(0) \right) \right\}
$$
\n
$$
= \frac{1}{2} \left\{ \left(\frac{1}{\sqrt{2}} - 1 \right) - 0 \right\}
$$
\n
$$
= \frac{1}{2} \left(\frac{1}{\sqrt{2}} - 1 \right)
$$

The answer is D.

Question 20

For a stationary point of inflection to occur $f'(x) = 0$. This only occurs at *x* = −*b* and at *x* = *d*. To the left of $x = -b$, $f'(x) > 0$ and to the right of $x = -b$, $f'(x) > 0$ so we have a stationary point of inflection at $x = -b$.

Note that to the left of $x = d$, $f'(x) > 0$ and to the right of $x = d, f'(x) < 0$ So we have a local maximum at $x = d$. The answer is B.

 \Box

 $f(x) = \frac{1}{x}$ $\frac{1}{x-1}$, has a maximal domain. That maximal domain is given by $x - 1 > 0$ *x* >1 $f(g(x))$ exists if $r_g \subseteq d_f$ So $d_f = (1, \infty)$.

So we require $r_g \subseteq (1, \infty)$

Method 1

The graph of $y = x - 1$ for $x \in R$ is shown in the diagram on the left below. In order to restrict the range to $(1, \infty)$, we are going to have to restrict the domain to $x \in (2, \infty)$ as shown on the graph on the right below.

9

Since $r_g \subseteq (1, \infty)$, $d_g \subseteq (2, \infty)$. So $a = 2$ is the only possible answer. So $a \neq -2, -1, 0 \text{ or } 1$ The answer is E.

Method 2 $r_g = (a-1, \infty)$ $a \geq 2$ $a - 1 \geq 1$ We require $r_g \subseteq (1, \infty)$

So $a = 2$ is the only possible answer.

The answer is E.

The only possible graph is E. The answer is E.

Question 22

b. *f*(*x*) = *e*

So $c = -\frac{1}{2}$

c

x

=

 $\frac{1}{2}$ log_e(2)

e

 $\frac{1}{2} \log_e(2^{-1})$

e

1

−

1

= −

2 1

x

 $\frac{1}{2}$ = 2

 $\Big\} =$ $\left(\frac{1}{2}\right)$ ſ

2

e

x

=

 $\log_e \left(\frac{1}{2} \right)$

e

©THE HEFFERNAN GROUP 2009 *Maths Methods 3 & 4 Trial Exam 2 solutions*

(1 mark)

©THE HEFFERNAN GROUP 2009 *Maths Methods 3 & 4 Trial Exam 2 solutions*

©THE HEFFERNAN GROUP 2009 *Maths Methods 3 & 4 Trial Exam 2 solutions*

 0.7 C C C C

(1 mark) correct linear function and included endpoints for $20 \le t \le 40$ **(1 mark)** correct marking of function along *t*-axis

ii. From the graph, we see that the mode is 40; that is, the value of *t* with the highest probability; that is, the highest value of $f(t)$.

(1 mark)

iii. Let
$$
m = \text{median}
$$

\n
$$
\int_{20}^{m} f(t) dt = 0.5
$$
\n
$$
\int_{20}^{m} \frac{1}{1000} (t + 20) dt = 0.5
$$
\n
$$
\frac{1}{1000} \left[\frac{t^2}{2} + 20t \right]_{20}^{m} = 0.5
$$
\n(1 mark)\n
$$
\left(\frac{m^2}{2} + 20m \right) - (200 + 400) = 500
$$
\n
$$
\frac{m^2}{2} + 20m - 1100 = 0
$$
\n
$$
m = -70.9902...
$$
\nor $m = 30.9902...$ \nor $m = 31$ minutes (to the nearest minute).
\n(1 mark) correct answer
\nTotal 16 marks

©THE HEFFERNAN GROUP 2009 *Maths Methods 3 & 4 Trial Exam 2 solutions*

 \Box b.

 \Box

a. $f(x) = cos(2x)$ $f'(x) = -2\sin(2x)$

b. The gradient of the tangent is - 1 when
\n
$$
f'(x) = -1
$$

\n $-2\sin(2x) = -1$
\n $\sin(2x) = \frac{1}{2}$ $x \in \left[0, \frac{\pi}{2}\right]$ $\frac{S}{T} \left[\frac{A}{C}\right]$
\n $2x = \frac{\pi}{6}, \frac{5\pi}{6}$ $2x \in [0, \pi]$
\n $x = \frac{\pi}{12}, \frac{5\pi}{12}$
\n $f\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{6}\right)$ $f\left(\frac{5\pi}{12}\right) = \cos\left(\frac{5\pi}{6}\right)$ (1 mark)
\n $= \frac{\sqrt{3}}{2}$
\nRequired points are $\left(\frac{\pi}{12}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{5\pi}{12}, -\frac{\sqrt{3}}{2}\right)$. (1 mark)

c. i. Tangent passes through
$$
\left(\frac{\pi + \sqrt{3}}{6}, 0\right)
$$
 and $\left(0, \frac{\sqrt{3}\pi + 3}{6}\right)$.
\nMethod 1
\n
$$
m = \frac{y_2 - y_1}{x_2 - x_1} = \left(\frac{\sqrt{3}\pi + 3}{6} - 0\right) \div \left(0 - \frac{\pi + \sqrt{3}}{6}\right)
$$
\n
$$
= -\left(\frac{\sqrt{3}(\pi + \sqrt{3})}{\pi + \sqrt{3}}\right)
$$
\n
$$
= -\sqrt{3} \text{ as required}
$$
\n(1 mark)

Method 2

Note that the gradient must be negative since the tangent is sloping up to the left.

Gradient of tangent is given by

$$
\frac{\text{rise}}{\text{run}}
$$
\n=\n
$$
\begin{pmatrix}\n\sqrt{3}\pi + 3 & \pi + \sqrt{3} \\
6 & \sqrt{3}\pi + 3\n\end{pmatrix}
$$
\n=\n
$$
\begin{pmatrix}\n\sqrt{3}\pi + 3 & 6 \\
6 & \pi + \sqrt{3}\n\end{pmatrix}
$$
\n=\n
$$
\begin{pmatrix}\n\sqrt{3}(\pi + \sqrt{3}) \\
\pi + \sqrt{3}\n\end{pmatrix}
$$
\n=\n
$$
\begin{pmatrix}\n\sqrt{3}(\pi + \sqrt{3}) \\
\pi + \sqrt{3}\n\end{pmatrix}
$$
\n=\n
$$
\begin{pmatrix}\n\pi + \sqrt{3} \\
6\n\end{pmatrix}
$$
\n*x*\n
\n(1 mark)

©THE HEFFERNAN GROUP 2009 *Maths Methods 3 & 4 Trial Exam 2 solutions*

ii.
$$
f'(x) = -2\sin(2x) = -\sqrt{3}
$$
 $x \in \left[0, \frac{\pi}{2}\right]$ (1 mark)
\n
$$
\sin(2x) = \frac{\sqrt{3}}{2}
$$
 $2x \in [0, \pi]$
\n
$$
2x = \frac{\pi}{3}, \frac{2\pi}{3}
$$

\n $x = \frac{\pi}{6}, \frac{\pi}{3}$

iii.

(1 mark)

The *x*-intercept of the tangent we require is $\frac{x+y}{6} = 0.8122...$ $\frac{\pi + \sqrt{3}}{4}$ =

Now $\frac{\pi}{4} = 0.7853...$ From the diagram above, we can see that the tangent we require must pass through the point where $x = \frac{h}{6}$ $x = \frac{\pi}{6}$. The other possible tangent which passes through the point where $x = \frac{\pi}{3}$ $x = \frac{\pi}{3}$, has an *x*-intercept which is less than $\frac{\pi}{4}$ $\frac{\pi}{4}$ and therefore less than $\frac{n}{6}$ $\pi + \sqrt{3}$. **(1 mark)** 2 $=\frac{1}{2}$ $\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right)$ $f(x) = cos(2x)$ $\left(\frac{\pi}{3}\right)$ $=$ cos $\left($ $\left(\frac{\pi}{6}\right)$ $f\left(\frac{\pi}{\epsilon}\right) = \cos\left(\frac{\pi}{2}\right)$ Point of tangency is $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$ $\left(\frac{\pi}{6},\frac{1}{2}\right)$ ſ 2 $\frac{\pi}{6}, \frac{1}{2}$ π . **(1 mark)** **d.** Do a quick sketch of the graph of $y = |f(x)|$.

 $f(x)$ – $a = 0$ **e.**

 \Box

 \Box

 $|f(x)| = a$

The graphs of $y = |f(x)|$ and $y = a$ are shown below.

i. For exactly one solution we see that $a = 0$.

(1 mark)

ii. For at least one solution $a \in [0,1]$. **(1 mark)**

From the graphs of $y = |f(x)|$ and $y = \frac{1}{2}$ Now $\frac{\pi}{4} - \frac{\pi}{6} = \frac{3\pi}{12} - \frac{2\pi}{12} = \frac{\pi}{12}$ $\frac{1}{2}$ we see that there is a point of intersection at $x = \frac{\pi}{4}$ $\frac{\pi}{6}$. The graph of $y = |f(x)|$ is symmetrical about the line $x = \frac{\pi}{4}$ where $x = \frac{\overline{\pi}}{4} + \frac{\pi}{12} = \frac{3\pi}{12} + \frac{\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{3}$ \Box $\frac{\pi}{4}$. 2 12 3 4 6 $\frac{\pi}{4} - \frac{\pi}{4} = \frac{3\pi}{12} - \frac{2\pi}{12} = \frac{\pi}{12}$ so there is another point of intersection at the point 4 12 12 3 4 12 $x = \frac{\pi}{4} + \frac{\pi}{12} = \frac{3\pi}{12} + \frac{\pi}{12} = \frac{4\pi}{12} = \frac{\pi}{2}$. So $f(x) = \frac{1}{2}$ for $x = \frac{\pi}{6}, \frac{\pi}{3}$ $f(x) = \frac{1}{2}$ for $x = \frac{\pi}{6}, \frac{\pi}{2}$.

 $\underline{\mathbf{N}}$

(**1 mark)**

Method 2	$ f(x) = \frac{1}{2}$	(1 mark)
$ f(x) = \frac{1}{2}$	$x \in \left[0, \frac{\pi}{2}\right]$	(1 mark)
$2x = \frac{\pi}{3}, \frac{2\pi}{3}$	$2x \in [0, \pi]$	$x = \frac{\pi}{6}, \frac{\pi}{3}$

(1 mark)

Total 14 marks

©THE HEFFERNAN GROUP 2009 *Maths Methods 3 & 4 Trial Exam 2 solutions*

a. Solve
$$
f(x) = 0
$$

\n $5\log_e(x-10) = 0$
\n $e^0 = x-10$
\n $1 = x-10$
\nSo $a = 11$ as required.

(1 mark)

b.
$$
f(x) = 5\log_e(x-10)
$$

\nLet $y = 5\log_e(x-10)$
\nSwap x and y for inverse.
\n $x = 5\log_e(y-10)$
\n $\frac{x}{5} = \log_e(y-10)$
\n $e^{\frac{x}{5}} = y-10$
\n $y = e^{\frac{x}{5}} + 10$
\n $f^{-1}(x) = e^{\frac{x}{5}} + 10$
\n $f^{-1}(x) = e^{\frac{x}{5}} + 10$
\n $d_f = [11,50]$
\n $r_f = [0, f(50)]$
\n $= [0, 18 \cdot 44...]$
\nSo $d_{f^{-1}} = r_f$
\n $= [0, 18 \cdot 4] \text{ (correct to 1 decimal place)}$

(1 mark) – correct domain

c. Since the graph of $y = f^{-1}(x)$ is a reflection of the graph of $y = f(x)$ in the line $y = x$, the floodlit areas north and east are the same.

 $= 1086 \text{m}^2$ (to nearest square metre) $10 \mid \log_e(x-10)$ Total area = $2 \mid f(x)$ 50 11 50 11 $= 10 \log_e(x -$ = ∫ ∫ *x* – 10)*dx f x dx e*

 (1 mark)

(1 mark)

d. Find the *x*-coordinates of the points of intersection between $y = 15$ and $y = f(x)$ and between $y = 15$ and $y = f^{-1}(x)$. Method 1 – by calculator

 $y = 15$ and $y = 5\log_e(x-10)$ intersect when $x = 30 \cdot 09$ (to 2 decimal places) *y* =15 and *y* = *e x* $5 + 10$ intersect when $x = 8.05$ (to 2 decimal places) So $b \in (8.05, 30.09)$ or $8.05 < b < 30.09$.

> **(1 mark)** correct values **(1 mark)** correct brackets or inequality signs

Method $2 - by$ hand $= 30 \cdot 09$ (to 2 dec. places) $= 8 \cdot 05$ (to 2 dec. places) $10 + e^{3}$ $x = 5 \log_e(5)$ $= x - 10$ $\log_e(5) = \frac{x}{5}$ $3 = \log_e(x - 10)$ 5 = $15 = 5 \log_e(x - 10)$ $15 = e^5 + 10$ $x = 10 + e^3$ $x =$ $e^3 = x$ 5 *x x* $15 = 5 \log_e(x - 10)$ $x - 10$ $5 = e$ $x - 10$ $15 = e$

So $b \in (8.05, 30.09)$ or $8.05 < b < 30.09$.

(1 mark) correct values **(1 mark)** correct bracket or inequality signs

e. i.
$$
T = \sqrt{x^2 + 2500} + \frac{50 - x}{2}
$$

\n
$$
\frac{dT}{dx} = \frac{1}{2} (x^2 + 2500)^{-\frac{1}{2}} \times 2x - \frac{1}{2}
$$
\n
$$
= \frac{x}{\sqrt{x^2 + 2500}} - \frac{1}{2}
$$
\n
$$
= \frac{2x - \sqrt{x^2 + 2500}}{2\sqrt{x^2 + 2500}}
$$
\n(1 mark)

$$
\frac{dT}{dx} = 0 \text{ for minimum.}
$$

So $2x - \sqrt{x^2 + 2500} = 0$
 $2x = \sqrt{x^2 + 2500}$
 $4x^2 = x^2 + 2500$
 $3x^2 = 2500$
 $x = \pm 28.8675$
but $x \ge 0$
So $x = 28.87$ (correct to 2 decimal places) (1 mark)

ii. $T = 68 \cdot 3$ seconds correct to 1 decimal place.

 (1 mark)

f. To take the quickest path, Victoria runs to $P(28.87,50)$. The straight line from ü *O*(0,0) to *P*(28 ⋅ 87,50) is given by $y = \frac{50}{204}$ $\frac{28}{28 \cdot 87} x$. **(1 mark)** Check whether this intersects with the perimeter of the floodlit area to the north given

 \Box by $f^{-1}(x) = e^{\frac{x}{5}} + 10$ $f^{-1}(x) = e^5 + 10$.

> Graph the two functions. They intersect at the point $(10.3475...17.9209...)$ and at the point (11⋅226152,19 ⋅ 44259...) so Victoria does enter the floodlit area.

 \Box

(1 mark)

(1 mark) Total 15 marks