Section 1

Answers

1. E	2. D	3. D	4. B	5. C	6. B
7. E	8. C	9. D	10. A	11. C	12. E
13. C	14. A	15. A	16. B	17. C	18. B
19. A	20. D	21. A	22. E		

Solutions

Question 1

$$f: [-4,2) \to R, f(x) = (x-1)^2$$

The local minimum occurs at the turning point (1,0) and the endpoint maximum occurs at

(-4, f(-4)) = (-4, 25). Hence the range is [0, 25].

Question 2

The graph of g is a transformation of the graph of y = |x|, as follows.

v = -|x|Reflection in the *x*-axis: Translation 2 units right: y = -|x-2|y = -|x-2|+3Translation 3 units up: The rule is g(x) = -|x-2|+3

Question 3

The transformation of y = f(x) to $y = -f\left(\frac{x}{2}\right) + 3$ involves:

a reflection in the *x*-axis; dilation by a factor of 2 from the y-axis and a translation 3 units up. By recognition, this corresponds to

$$T\left(\begin{bmatrix} x \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ 1 + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} 2 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} 0\\ 3 \end{bmatrix}$$

This can be confirmed by finding (x', y'), the image of (x, y) under this transformation.

$$x' = 2x \implies x = \frac{x'}{2}$$
 (equation 1)
$$y' = -y + 3 \implies y = -(y' - 3)$$
 (equation 2)

Substitute equations 1 and 2 in y = f(x).

$$-(y'-3) = f\left(\frac{x'}{2}\right)$$

Answer D

Answer E

Answer D

$$y' = -f\left(\frac{x'}{2}\right) + 3$$
, as required.

Answer B

Answer C

From the graph of the quartic function the coefficient of x^4 is negative and the single roots are x = a and x = c. The corresponding factors are (x-a) and (x-c). The double root is (x-b) (notwithstanding the fact that a and b are negative numbers). A possible rule is

$$f(x) = -(x-a)(x-c)(x-b)^{2}$$

Question 5

From the graph of $f(x) = (2x+1)^8$, note that f will be a one-to-one function for $x \in \left[-\frac{1}{2}, \infty\right]$.

Therefore f will have an inverse function when $m \ge -\frac{1}{2}$.

Question 6

Answer B

The domain of f is $R \setminus \{0\}$ and the domain of g is R. Hence, the domain of f - g is where the dom $f \cap$ dom g which is $R \setminus \{0\}$. The graphs of f and g is shown below.

Question 7

Solve the system of equations (using the Solve command or matrices)

Hence there will be a unique solution, unless $k^2 - 9 = 0$. That is $k = \pm 3$. Hence a unique exists for $k \in R \setminus \{-3, 3\}$. Answer E

Alternatively, there is no unique solution when the determinant of the coefficient matrix is zero. This occurs when $k = \pm 3$. Unique solution $R \setminus \{-3, 3\}$.

Alternatively, there is no unique solution when both lines have the same gradient. That is, k+1 4

 $\frac{k+1}{2} = \frac{4}{k-1}$ (k+1)(k-1) = 8 $k^{2} - 1 = 8$ $k^{2} - 9 = 0$ $k = \pm 3$

Hence a unique solution exists for $k \in R \setminus \{-3, 3\}$.

Question 8

To satisfy $f(u+\pi) = f(u)$, f must be a function with a period of π . Some possibilities are $f(x) = \tan(x)$, $f(x) = |\cos(x)|$, $f(x) = \sin^2(x)$.

From the options provided, $f(x) = \tan(x)$ is the only function with a period of π .

1	This can be confirmed us	ing (CAS.
	1.1 2.1 3.1 4.1 RAD AUTO REAL	Î	
	Define f(x) = tan(x)	Done 🛛]
	$A_{u+\pi} = A_u$	true	
	1		

Question 9

Use the CAS or solve by hand.

$$\cos(3x) = -\frac{1}{2}$$

$$3x = \frac{2\pi}{3}, \frac{4\pi}{3}, ...,$$

$$x = ... -\frac{2\pi}{3}, \frac{2\pi}{9}, \frac{4\pi}{9}, ...,$$

The period is $\frac{2\pi}{3}$.
The general solutions are

$$x = \frac{2\pi}{9} + \frac{2\pi}{3}k = \frac{2\pi + 6\pi k}{9} = \frac{2\pi(3k+1)}{9}, \ k \in \mathbb{Z}$$

$$x = -\frac{2\pi}{9} + \frac{2\pi}{3}k = \frac{-2\pi + 6\pi k}{9} = \frac{2\pi(3k-1)}{9}, \ k \in \mathbb{Z}$$

≥/99

Answer D

Answer C

Using the chain rule, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}, \text{ where } y = g(x) \text{ and } u = f(x)$ $\frac{d(g(x))}{dx} = \frac{d(-\cos(f(x)))}{d(f(x))} \times \frac{d(f(x))}{dx}$ $= \sin(f(x)) \times f'(x)$

This may be confirmed with CAS.

2.1	3.1	4.1	5.1	RAD AUTO REAL	
Defin	e g(x)=-co	s(Ax)) Done	
$\frac{d}{dx}(g$	(x))			$\sin(f(x))\cdot\frac{d}{dx}(f(x))$	
				2/9	9

x = 2 (max)

 $x = -1 (\min)$

Question 11 Consider the sign of the gradient.

Local min. at x = -1 and max. at x = 2.

Question 12

The derivative of f is not defined at x = 1 as there is a cusp at x = 1. f' exists for $x \in \mathbb{R} \setminus \{1\}$.

Question 13

The area is given by

$$\int_{-2}^{0} f(x)dx - \int_{0}^{1} f(x)dx + \int_{1}^{2} f(x)dx$$
Note that $\int_{1}^{0} f(x)dx = -\int_{0}^{1} f(x)dx$
The equivalent option is $\int_{-2}^{0} f(x)dx + \int_{1}^{0} f(x)dx + \int_{1}^{2} f(x)dx$

Answer A

Answer C

Answer C

Answer E

Answer A

Question 14

Consider the sign of the gradient function.

Option A shows the graph of the gradient function with this sign profile.

Question 15

$$\int_{-2}^{1} \left(2x - \frac{u(x)}{2}\right) dx = \int_{-2}^{1} (2x) dx - \frac{1}{2} \int_{-2}^{1} u(x) dx$$
$$= \left[x^{2}\right]_{-2}^{1} - \frac{1}{2} \times 8$$
$$= \left[1 - 4\right] - 4$$
$$= -7$$

Answer A

Answer **B**

Question 16

The area of each rectangle = length × width Area = $\log_e (2) \times 1 + \log_e (3) \times 1 + \log_e (4) \times 1$ = $\log_e (2 \times 3 \times 4)$ = $\log_e (24)$

© The Mathematical Association of Victoria, 2009

Answer C

The average value of $n(t) = 20 - 12 \cos\left(\frac{\pi}{12}t\right)$ in the interval [6, 11] is given by

$$\frac{1}{11-6}\int_{6}^{11} n(t)dt \approx 27$$

Question 18

Let *R* represent the probability it will rain. The probability it will rain on Wednesday = RRR + RR'R= $0.35 \times 0.35 + 0.65 \times 0.22$ = 0.2655

Question 19

a+b+0.5=1 a+b=0.5...(1) 0.1+2a+4b+1.2+1.4=3.72a+4b=1...(2)

$$\begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1.0 \end{bmatrix}$$

Question 20

Let X represent the Exam Result

 $X \sim N(30,49)$

Using the inverse normal distribution, 40 is the cut off score.

Answer D

Answer **B**

Answer A

© The Mathematical Association of Victoria, 2009

Let X represent being well

 $X \sim Bi(10, 0.7)$

 $Pr(X \le 2) = 0.0016$ correct to 4 decimal places.

Question 22

Solve $\int_{-\infty}^{a} f(x) = \frac{1}{2}$ for *a* where *a* is the median

Using CAS, the median is $\sqrt[3]{15}$.

Answer E

Section 2

Question 1

a. *A* is the amplitude which is 10. *B* is the vertical translation which is 10. Both correct [1A]

$$P = \frac{2\pi}{n} = \frac{4}{3} \times 20 = \frac{80}{3}$$
$$n = \frac{2\pi \times 3}{80} = \frac{3\pi}{40}$$
[1A]

b. Average value =
$$\frac{1}{b-a} \int_{a}^{b} (d(x)) dx$$

 $10 \cdot \sin\left(\frac{3 \cdot \pi}{40} \cdot x\right) + 10 dx$

140 3

 $\frac{3}{140}$

c.

$$=\frac{1}{\frac{140}{3}-0}\int_{0}^{\frac{140}{3}}\left(10\sin\left(\frac{3\pi}{40}x\right)+10\right)dx$$
[1A]

$$=10+\frac{20}{7\pi}$$
 cm [1A]

Note
$$b = \frac{7}{4} \times \frac{80}{3} = \frac{140}{3}$$

$$(0,5), \left(\frac{20}{3}, 10\right), (20,0), \left(\frac{100}{3}, 10\right), \left(\frac{140}{3}, 0\right)$$

ii. $d_b = 5\sin\left(\frac{3\pi}{40}x\right) + 5$ [1A]

iv.
$$\frac{3}{2}\int_{0}^{\frac{3}{2}} d dx$$

correct terminals with dx [1A]

correct terminals with dx

$$=\frac{3}{2}\int_{0}^{\frac{140}{3}} \left(10\sin\left(\frac{3\pi}{40}x\right) + 10\right) dx$$

d.

Consider the function $f: R \to R, f(x) = 2xe^{-\frac{x}{2}}$.

a.
$$f'(x) = (2-x)e^{-\frac{x}{2}}$$
 [1A]

$$\int_{\text{Define } f(x) = 2x \cdot e^{\frac{x}{2}}}^{1.1} \int_{\text{Done } Done } Done \\ \frac{d}{dx}(f(x)) \\ (2-x) \cdot e^{\frac{x}{2}} \\ (2-x) \cdot e^{\frac{x}{2}} \\ \frac{d}{dx}(f(x)) \\ \frac{d}$$

b. For a stationary point, f'(x) = 0. This occurs at x = 2.

$$f(2) = 4e^{-1} = \frac{4}{e}$$
 [1M]

Turning point at $(2, 4e^{-1}) = (2, \frac{4}{e})$ [1A] $\boxed{1.1 \qquad \text{RAD AUTO REAL}}$ $\boxed{\frac{x}{dx}(f_x) = 2 \cdot x \cdot e^{\frac{x}{2}}}$ $\boxed{\frac{d}{dx}(f_x)} = (2-x) \cdot e^{\frac{x}{2}}$ $\boxed{\frac{d}{dx}(f_x)} = (2-x) \cdot e^{\frac{x}{2}}$ c. The shape and key features of the graph may be obtained by graphing the function.

Correct shape and skew [1A] Asymptote clearly shown and labelled [1A] Axes intercept at the origin and turning point labelled: [1A]

i.
$$f'(1) = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}$$
 [1A]

'X 2 2•x•e

$$\frac{\frac{d}{dx}(f(x))|_{x=1}}{\frac{d}{dx}(f(x))|_{x=1}} = e^{\frac{1}{2}}$$
ii. $m = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

$$\frac{f(a) - 0}{a - 0} = e^{-\frac{1}{2}}$$
[1M]
Solve for $a, \frac{2ae^{-\frac{a}{2}}}{a} = e^{-\frac{1}{2}}$
[1M]
 $2e^{-\frac{a}{2}} = e^{-\frac{1}{2}}$

 $\log_e\left(2e^{-\frac{a}{2}}\right) = \log_e\left(e^{-\frac{1}{2}}\right)$ $\log_e(2) - \frac{a}{2} = -\frac{1}{2}$ $a = 1 + 2\log_e(2)$, as required [1M]

d.

f(x)

Alternatively, solve using CAS

iii. The equation of the line PQ is
$$y = \left(e^{-\frac{1}{2}}\right)x$$

Area

$$= \int_{0}^{1+2\log_{e}(2)} \left(\left(2xe^{-\frac{x}{2}} \right) - \left(\left(e^{-\frac{1}{2}} \right)x \right) \right)$$
[1M]
= 0.9522 [1A]

(

Alternatively, use a graphical approach.

6/99

0.952242

1.1 1.2 1.3 RAD AUTO REAL

© Area between graph of f and PQ

 $\left(\frac{1}{p(x)-e^{\frac{1}{2}}}\right)_{\mathrm{d}x}$

solve $\frac{Aa}{-A0} = e^2$,a a-0

(2.ln(2)+1

0

The gradient of the tangent: $m_T = e^{-\frac{1}{2}}$. e. Gradient of normal: $m_N = -\frac{1}{m_T} = -e^{\frac{1}{2}}$ Normal at $(1, f(1)) = (1, 2e^{-\frac{1}{2}})$ The equation of the normal is $y-2e^{-\frac{1}{2}}=-e^{\frac{1}{2}}(x-1)$ $y = -e^{\frac{1}{2}}x + e^{\frac{1}{2}} + 2e^{-\frac{1}{2}}$

[1M]

Alternatively

$$y = -\sqrt{e} x + \sqrt{e} + \frac{2}{\sqrt{e}}$$
1.1 1.2 1.3 1.4 RAD AUTO REAL
© Equation of normal at x = 1
solve $\left(y - f(1) = -e^{\frac{1}{2}} \cdot (x-1), y\right)$
 $y = -e^{\frac{1}{2}} \cdot (e \cdot x - e^{-2})$
 $expand \left(-\frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}} \cdot (e \cdot x - e^{-2})\right)$
 $-\sqrt{e} \cdot x + \sqrt{e} + \frac{2}{\sqrt{e}}$
 $3/9$

f. LHS =
$$2xyf(x+y)$$

$$= 2xy \times 2(x+y)e^{-\left(\frac{x+y}{2}\right)}$$

$$\left(\begin{array}{c} -\frac{x}{2} & -\frac{y}{2} & -\frac{x}{2} \end{array} \right)$$
[1M]

$$= 2xy \left(2xe^{-2}e^{-2} + 2ye^{-2}e^{-2} \right)$$
 [1M]

$$= xf(x)f(y) + yf(y)f(x)$$

$$= (x+y)f(x)f(y) = \text{RHS as required}$$
[1M]

a. Using Pythagoras' theorem,

$$BD = \sqrt{x^2 + 6^2} = \sqrt{x^2 + 36}$$
[1A]

b. i. time =
$$\frac{\text{distance}}{\text{speed}}$$
 [1M]

Time from A to
$$B = \frac{14 - x}{20}$$

Time from B to $D = \frac{\sqrt{x^2 + 36}}{20}$ [1M]
 $T(x) = \frac{14 - x}{20} + \frac{\sqrt{x^2 + 36}}{12}, \ 0 \le x \le 14$
[1A]

Using technology to find the coordinates of the local minimum of the graph of *T*,

- ii. Minimum time occurs when x = 4.5 km.
- **iii**. The minimum time is 1.1 hours

1.5 2.1 2.2 3.1 RAD AUTO REAL	ĺ
Define $t(x) = \frac{14-x}{20} + \frac{\sqrt{x^2 + 36}}{12}$	Done
$\ensuremath{\mathbb{C}}$ Value of x where time is a minimum	
$\operatorname{solve}\left(\frac{d}{dx}(t(x))=0,x\right)$	x=4.5
© Minimum time	
t(x) x=4.5	1.1
	5/5

[1A] [1A]

Alternatively

c. i. The maximum concentration is 3 units/cm³ and it occurs 1 hour after the dose is administered.

Alternatively

d. Q(t) > 1.25 when 0.22 < t < 4.58.

Pain relief: 4.58 - 0.22 = 4.36 hours

Alternatively,

[2A]

[1A]

[1M] [1A]

Correct shape	[1A]
Local min. and x-intercept labelled	[1A]
Asymptote labelled and $(0, 6)$ shown as an "open circle"	[1A]

1A for each correct column

Question 4

a.
$$0.3^3 = 0.027$$
 [1A]
b. $t_{i+1} \begin{bmatrix} 0.3 & 0.8 \\ 0.7 & 0.2 \end{bmatrix}$

c.
$$\begin{bmatrix} 0.3 & 0.8 \\ 0.7 & 0.2 \end{bmatrix}^3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.475 \\ 0.525 \end{bmatrix}$$
 [1M]

The probability Grandma bottles tomatoes in 2011 is 0.475.

1.1 1.2 1.3	RAD AUTO REAL	Î
$\begin{bmatrix} .3 & .8 \end{bmatrix}^3 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.475 .525	
		-
	1	1/99

d. Solve
$$\begin{bmatrix} 0.3 & 0.8 \\ 0.7 & 0.2 \end{bmatrix} \begin{bmatrix} x \\ 1-x \end{bmatrix} = \begin{bmatrix} x \\ 1-x \end{bmatrix}$$
 for x. [1M]
$$x = \frac{8}{15}$$

The probability she will bottle tomatoes in the long term, assuming she does not $\frac{8}{8}$

die is
$$\frac{\delta}{15}$$
. [1A]

1.1 1.2 1.3	RAD AUTU REAL	
$\begin{bmatrix} .3 & .8 \\ .7 & .2 \end{bmatrix}^3 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}$		475 525]
solve([.3 .8].[.7 .2].[1	$ \begin{array}{c} x \\ 1-x \end{array} = \begin{bmatrix} x \\ 1-x \end{bmatrix} x $ x=.533	3333
exact solve $\left[\begin{array}{c} .3 \\ .7 \end{array} \right]$	$ \begin{array}{c} .8 \\ .2 \end{array} \left[\begin{array}{c} x \\ 1-x \end{array} \right] = \left[\begin{array}{c} x \\ 1-x \end{array} \right] x \end{array} \right) \qquad x^{2} $	<u>8</u> 15
		3/99

e. Using the inverse normal distribution, with $\mu = 0$ and $\sigma = 1$.

1.1 1.2 1.3 RAD AUTO REAL]
solve $\left(\frac{30-a}{b} = 1.64485 \text{ and } \frac{15-a}{b} = 1.28155, \right)$	
a=21.5689 and b=5.12575	
1/99	
$\frac{30-\mu}{\sigma} = 1.64485\dots(1)$	
$\frac{15-\mu}{2} = -1.28155$ (2)	
σ = 1.20100(2)	
Both equations correct	
$\sigma = 5.1 \sigma$	
$u = 21.6 \circ$	
$\mu - 21.0 \text{ g}$	
Both answers correct	

- **f.** 0.85^4 [1M] ≈ 0.5220 [1A]
- g. Let $Y \sim Bi(10, 0.05)$ [1M] $\Pr(Y \ge 2) \approx 0.0861$ [1A]

[1M]

RAD AUTO REAL
.086138
1/99
)

h. Let $W \sim Bi(n, 0.05)$ $Pr(W \ge 2) > 0.95$ 1 - (Pr(W = 0) + Pr(W = 1)) > 0.95 Pr(W = 0) + Pr(W = 1) < 0.05 $0.95^{n} + {10 \choose 1} (0.05)(0.95)^{n-1} < 0.05$ n = 67

1.1 1.2 1.3 RAD AUTO REAL	Î
$solve((.95)^{n}+10.05\cdot(.95)^{n-1}<.05,n)$	
n>66.6479	2
1	
1	/99

END OF SOLUTIONS

[1M]

[1M]