Mathematical Association of Victoria Trial Exam 2009

MATHEMATICAL METHODS / MATHEMATICAL METHODS (CAS)

STUDENT NAME	
--------------	--

Written Examination 1

Reading time: 15 minutes Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of questions	Number of questions to be answered	Number of marks
9	9	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are NOT permitted to bring into the examination room: notes of any kind, blank sheets of paper, white out liquid/tape or a calculator of any type.

Materials supplied

- Question and answer book of 10 pages, with a detachable sheet of miscellaneous formulas at the back
- Working space is provided throughout the book.

Instructions

- Detach the formula sheet from the back of this book during reading time.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer all questions in the spaces provided.

A decimal approximation will not be accepted if an **exact** answer is required to a question.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

•	_
Ouestion	1
Outsuun	

Let
$$f(x) = (e^{2x} - 3)^4$$
. Evaluate $f'(0)$.

3 marks

Question 2

Solve $2\log_e(x-2) - \log_e(x) = 0$ for x, where x > 2.

3 marks

Question 3

Solve
$$2\sin\left(2x - \frac{\pi}{6}\right) = 1$$
 for $-\pi < x < \pi$.

3 marks

Consider the function $g:[-3,\infty)\to R$, with rule $g(x)=2(x+3)^2-1$.

a. Find the **rule** of the inverse function, g^{-1} .

b. Find the **domain** of the inverse function, g^{-1} .

2 + 1 = 3 marks

Question 5

Let
$$h(x) = \frac{1}{\tan(x)} + x$$
.

a. Show that $h'(x) = -\frac{1}{\sin^2(x)} + 1$.

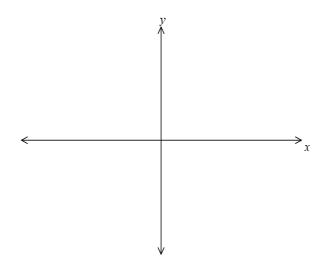
b. Hence find $\int \left(\frac{1}{\sin^2(x)} dx \right)$.

2 + 3 = 5 marks

Consider the function $f: R \setminus \{1\} \rightarrow R$, $f(x) = 2 - \frac{2}{(x-1)^2}$.

a. Find the **coordinates** of the x-axis intercepts of the graph of f.

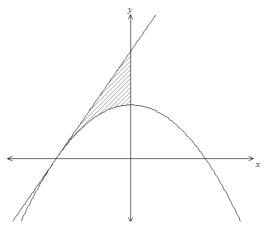
b. On the axes below, sketch the graph of y = |f(x)|. Label all axes intercepts with their coordinates. Label each asymptote with its equation.



c. Write down the domain of the derivative function, $\frac{d}{dx}(|f(x)|)$.

1 + 3 + 1 = 5 marks

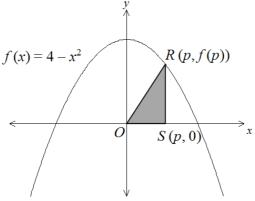
The graph of $f: R \to R$, $f(x) = 4 - x^2$ and the tangent to the graph of f, where it crosses the negative x-axis, are shown.



a.	Find the equation	of the tangent to	o the graph of <i>f</i>	where i	it crosses t	he negati	ve <i>x</i> -axis.
----	-------------------	-------------------	-------------------------	---------	--------------	-----------	--------------------

b.	Find the area of the shaded region.

c. Consider the triangle ORS, where vertex R is on the graph of f, with coordinates (p, f(p)), and vertices O and S are on the x-axis, with coordinates (0,0) and (p,0), respectively.



If $p \in [-2, 2]$, find the value(s) of p for which the area of triangle ORS is a maximum.

2	 2	ㅗ	2	_	Q	marka

A spherical balloon is being inflated at a rate of 10 cm³/s. The balloon will burst when the surface area reaches 3600π cm³.

a.	The surface area of a sphere of radius r is given by $4\pi r^2$. Show that the radius of the balloon is 30 cm at the instant when the balloon bursts.
b.	Find the rate at which the radius of the balloon is changing, in cm per second, at the instant when the balloon bursts.

Question 9

A continuous random variable *X* has a probability density function $f(x) = \begin{cases} \frac{x}{x^2 + 1} & \text{for } 0 \le x \le a \\ 0 & \text{elsewhere} \end{cases}$, where *a* is a real constant. Part of the graph of f, where $0 \le x \le a$, is shown below.

1.5

Given that $\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \log_e (x^2 + 1) + c$, where c is a real constant, find the value of a.

2 marks Find the mode of X.

2 + 2 + 2 = 6 marks

END OF QUESTION AND ANSWER BOOK

Mathematical Methods and Mathematical Methods (CAS) Formulas

Mensuration

volume of a pyramid: $\frac{1}{3}Ah$ volume of a sphere: $\frac{4}{3}\pi r^3$ $\frac{1}{2}(a+b)h$ volume of a pyramid: area of a trapezium:

curved surface area of a cylinder:

 $\frac{1}{2}bc\sin A$ $\pi r^2 h$ area of a triangle: volume of a cylinder:

 $\frac{1}{3}\pi r^2 h$ volume of a cone:

Calculus

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c, n \neq -1$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + c$$

$$\frac{d}{dx}(\log_e(x)) = \frac{1}{x}$$

$$\int \frac{1}{x} dx = \log_e|x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a \cos(ax)$$

$$\int \sin(ax)dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax)$$

$$\int \cos(ax)dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a \sec^2(ax)$$

product rule:
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
 quotient rule: $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

chain rule:
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
 approximation: $f(x+h) \approx f(x) + hf'(x)$

Probability

$$Pr(A) = 1 - Pr(A') Pr(A \cap B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

variance: var(X) = σ^2 = E($(X - \mu)^2$) = E(X^2) – μ^2 mean: $\mu = E(X)$

prob	ability distribution	mean	variance
discrete	$\Pr(X=x)=p(x)$	$\mu = \sum x p(x)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
continuous	$Pr(a < X < b) = \int_{a}^{b} f(x)dx$	$\mu = \int_{-\infty}^{\infty} x \ f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$