SECTION 1 - ANSWERS

SECTION 1 - SOLUTIONS

Question 1 Answer E

 $f: [-4,2) \rightarrow R, f(x) = (x-1)^2$

The local minimum occurs at the turning point $(1, 0)$ and the endpoint maximum occurs at $(-4, f(-4)) = (-4, 25)$. Hence the range is [0, 25].

Question 2 Answer D

The graph of *g* is a transformation of the graph of $y = |x|$, as follows.

Question 3 Answer A

$$
\frac{2x-1}{x+3} = \frac{2(x+3)-7}{x+3}
$$

$$
= \frac{2(x+3)}{x+3} - \frac{7}{x+3}
$$

$$
= 2 - \frac{7}{x+3}
$$

$$
= 2 - 7f(x+3)
$$

Alternatively, use the division algorithm.

Question 4 Answer B

From the graph of the quartic function the coefficient of x^4 is negative and the single roots are $x = a$ and $x = c$. The corresponding factors are $(x - a)$ and $(x - c)$. The double root is $(x - b)$ (notwithstanding the fact that *a* and *b* are negative numbers).

A possible rule is

 $f(x) = -(x-a)(x-c)(x-b)^2$

Question 5 Answer C

From the graph of $f(x) = (2x+1)^8 = \left(2\left(x+\frac{1}{2}\right)\right)^8$, note that *f* will be a one-to-one function for $x \in \left[-\frac{1}{2}, \infty\right).$

Therefore, f will have an inverse function when $m \ge$

Question 6 Answer B The domain of *f* is $R \setminus \{0\}$ and the domain of *g* is *R*. Hence, the domain of $f - g$ is where the dom $f \cap$ dom g which is $R \setminus \{0\}$.

Question 7 Answer E

 $\cos(3x) = -\frac{1}{2}$ $3x = \frac{2\pi}{2}, \frac{4\pi}{2}, \ldots$ $x = \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{8\pi}{9}$ as the period is $\frac{2\pi}{3}$. The sum is $\frac{14\pi}{9}$.

Question 8 Answer A

 $y = 2\sin(3x-1) = 2\sin\left(3\left(x-\frac{1}{3}\right)\right)$ There is a dilation of a factor of 2 from the *x*-axis, a dilation of a factor of $\frac{1}{2}$ from the *y*-axis and a translation

of
$$
\frac{1}{3}
$$
 of a unit to the right.

Question 9 Answer E

 $\log_e(2x) - \sqrt{x^3} = \log_e(2x) - x^{\frac{3}{2}}$ $\frac{d}{dx}\left(\log_e(2x)-x^{\frac{3}{2}}\right)=\frac{2}{2x}-\frac{3x^{\frac{1}{2}}}{2}$ $=\frac{1}{x} - \frac{3\sqrt{x}}{2}$

Question 10 Answer A

Using the chain rule,

 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$, where $y = g(x)$ and $u = f(x)$ $\frac{d(g(x))}{dx} = \frac{d(-\cos(f(x)))}{d(f(x))} \times \frac{d(f(x))}{dx}$ $=\sin(f(x)) \times f'(x)$

Question 11 Answer C

Consider the sign of the gradient.
 $x = 2 \text{ (max)}$

$$
x = 2 \text{ (max)}
$$
\n
$$
x = 2 \text{ (max)}
$$
\n
$$
x = -1 \text{ (min)}
$$

Local min. at $x = -1$ and max. at $x = 2$.

Question 12 Answer E

The derivative of *f* is not defined at $x = 1$ as there is a cusp at $x = 1$. f' exists for $x \in R \setminus \{1\}$.

Question 13 Answer C

The area is given by

$$
\int_{-2}^{0} f(x)dx - \int_{0}^{1} f(x)dx + \int_{1}^{2} f(x)dx
$$

Note that
$$
\int_{1}^{0} f(x)dx = -\int_{0}^{1} f(x)dx
$$

The equivalent option is
$$
\int_{-2}^{0} f(x)dx + \int_{1}^{0} f(x)dx + \int_{1}^{2} f(x)dx
$$

Question 14 Answer A

Consider the sign of the gradient function.

Option **A** shows the graph of the gradient function with this sign profile.

© The Mathematical Association of Victoria, 2009 Page 3

Question 15 Answer A

$$
\int_{-2}^{1} \left(2x - \frac{u(x)}{2} \right) dx = \int_{-2}^{1} (2x) dx - \frac{1}{2} \int_{-2}^{1} u(x) dx
$$

$$
= \left[x^{2} \right]_{-2}^{1} - \frac{1}{2} \times 8
$$

$$
= \left[1 - 4 \right] - 4
$$

$$
= -7
$$

Question 16 Answer B

The area of each rectangle = length \times width Area = $\log_e(2) \times 1 + \log_e(3) \times 1 + \log_e(4) \times 1$

$$
= \log_e (2 \times 3 \times 4)
$$

$$
= \log_e (24)
$$

Question 17 Answer A

The average rate of change is given by the average gradient of the graph of *h*.

av. rate
$$
=\frac{h(\pi) - h(\frac{\pi}{2})}{\pi - \frac{\pi}{2}}
$$

$$
= \frac{(\sin(\pi) + \cos(\pi)) - (\sin(\pi/2) + \cos(\pi/2))}{\pi/2} = \frac{-4}{\pi}
$$

$$
= \frac{-2}{\pi/2}
$$

Question 18 Answer B

Let *R* represent the probability it will rain. The probability it will rain on Wednesday = $RRR + RR'R$ $= 0.35 \times 0.35 + 0.65 \times 0.22$ $= 0.2655$

Question 19 Answer B

The median
$$
=
$$
 $\frac{3+5}{2} = 4$

Question 20 Answer D

$$
Pr(X = 6 | X \ge 3) = \frac{Pr(X = 6)}{Pr(X \ge 3)}
$$

= $\frac{0.15}{0.6}$
= 0.25

Question 21 Answer D

Let *X* represent the Exam Result $X \sim N(30, 49)$

Using the inverse normal distribution, 40 is the cut off score.

Question 22 Answer A Let *X* represent being well $X \sim \text{Bi}(10, 0.7)$ $Pr(X \le 2) = 0.0016$ correct to 4 decimal places

pinomodf(10,.7,2

END OF SECTION 1 SOLUTIONS

SECTION 2 - SOLUTIONS

Question 1

a. i *A* is the amplitude
\n
$$
A = 10 \text{ cm}
$$
 [1A]
\n*B* is the vertical translation
\n $B = 10 \text{ cm}$ [1A]
\n**ii.** $P = \frac{2\pi}{n} = \frac{4}{3} \times 20 = \frac{80}{3}$ [1M]
\n $n = \frac{6\pi}{80}$

$$
=\frac{3\pi}{40}
$$
 as required

b. i.

Correct shape
Coordinates labelled
(0, 5),
$$
\left(\frac{20}{3}, 10\right)
$$
 (20, 0), $\left(\frac{100}{3}, 10\right)$ $\left(\frac{140}{3}, 0\right)$ [1A]

$$
\mathbf{i} \mathbf{i}. \qquad d_b = 5 \sin \left(\frac{3\pi}{40} x \right) + 5 \tag{1A}
$$

iii. The areas are the same. **[1A]** $\frac{140}{1}$

iv.
$$
\frac{3}{2} \int_{0}^{3} d
$$

Must have *dx* **[1A]**

 dx

Could use $\frac{3}{2}d$ or $3(d-d_b)$ or $3d_b$.

 \sim

$$
=\frac{3}{2}\int_{0}^{\frac{140}{3}}\left(10\sin\left(\frac{3\pi}{40}x\right)+10\right)dx
$$

= 763.66 cm³ correct to 2 decimal places [1A]

$$
c. \qquad d_b = 5\sin\left(\frac{3\pi}{40}\left(\frac{20}{3} - 2\right)\right) + 5\tag{1H}
$$

The height is 9.46 cm correct to two decimal places. **[1A]**

 \sim

Question 2

Consider the function $f: R \to R, f(x) = 2xe^{-\frac{x}{2}}$. **a.** Using the product rule **[1M]** $f'(x) = 2e^{-\frac{x}{2}} - xe^{-\frac{x}{2}}$ $=(2-x)e^{-\frac{x}{2}}$ **[1A] b.** For a stationary point, $f'(x) = 0$.

$$
(2-x)e^{-\frac{2}{2}} = 0
$$
 [1M]

Using the null factor law, noting that $e^{-\frac{x}{2}} > 0$ for all values of *x*, $\sqrt{2}$

$$
(2-x)=0
$$

$$
x=2
$$
 [1A]

$$
f(2) = 2 \times 2e^{-\frac{2}{2}}
$$

= $4e^{-1} = \frac{4}{e}$

Turning point at $\left(2, 4e^{-1}\right) = \left(2, \frac{4}{e}\right)$ [1A] The height is 9.46 cm correct to two decimal places. **[1A]**

c. The shape and key features of the graph may be obtained using a graphical calculator.

Correct shape, crossing at the origin: **[1A]** Asymptote and turning point labelled: **[1A]**

d. i.
$$
f'(1) = (2-1)e^{-\frac{1}{2}}
$$

= $e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}$

© The Mathematical Association of Victoria, 2009 Page 7

The gradient at
$$
x = 1
$$
 is $e^{-\frac{1}{2}}$ or $\frac{1}{\sqrt{e}}$.
\nii. $m = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$
\n $\frac{f(a) - 0}{a - 0} = e^{-\frac{1}{2}}$
\n $\frac{2ae^{-\frac{a}{2}} - 0}{a - 0} = e^{-\frac{1}{2}}$
\n $2e^{-\frac{a}{2}} = e^{-\frac{1}{2}}$
\n $e^{-\frac{a}{2}} = \frac{e^{-\frac{1}{2}}}{2}$
\n $-\frac{a}{2} = \log_e \left(e^{-\frac{1}{2}}\right) - \log_e (2)$
\n $-\frac{a}{2} = -\frac{1}{2} - \log_e (2)$
\n $a = 1 + 2 \log_e (2)$, as required
\niii. The equation of the line PQ is $y = \left(e^{-\frac{1}{2}}\right)x$
\nArea = $\int_0^{1+2\log_e(2)} \left(2xe^{-\frac{x}{2}}\right) - \left(\left(e^{-\frac{1}{2}}\right)x\right)$
\n $= 0.9522$
\nThe integral may be evaluated using a graphical calculator.
\n $\begin{array}{|l|l|}\n\hline\n\text{W1} = 2\sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W2} = \sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W3} = \sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W4} = \sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W5} = \sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W6} = \sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W6} = \sqrt[3]{e^x}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W1} = \frac{1}{\sqrt[3]{e^x}}, \frac{1}{\sqrt[3]{e^x}} \\
\hline\n\text{W1} = \frac{1}{\sqrt[3]{e^x}}, \frac{1}{\sqrt[3]{e^x}} \\
\h$

Normal at $(1, f(1)) = \left(1, 2e^{-\frac{1}{2}}\right)$ [1M]

e. The gradient of the tangent : $m_T = e^{-\frac{1}{2}}$.

//
UpperLimit?
X=1+21n(2)∎

Gradient of normal: $m_N = -\frac{1}{m_T} = -e^{\frac{1}{2}}$

 $\sqrt{\frac{1}{16000x=0.95224164}}$

The equation of the normal is

$$
y-2e^{-\frac{1}{2}} = -e^{\frac{1}{2}}(x-1)
$$

\n
$$
y = -e^{\frac{1}{2}}x + e^{\frac{1}{2}} + 2e^{-\frac{1}{2}}
$$

\nAlternatively
\n
$$
y = -\sqrt{e}x + \sqrt{e} + \frac{2}{\sqrt{e}}
$$
\n[1A]

Question 3

a. Using Pythagoras' theorem, $BD = \sqrt{x^2 + 6^2} = \sqrt{x^2 + 36}$ **[1A]**

b.

i. time =
$$
\frac{\text{distance}}{\text{speed}}
$$
 [1M]
Time from *A* to $B = \frac{14 - x}{}$

Time from *B* to
$$
D = \frac{\sqrt{x^2 + 36}}{20}
$$
 [1M]

$$
T(x) = \frac{14 - x}{20} + \frac{\sqrt{x^2 + 36}}{12}, 0 \le x \le 14
$$
 [1A]

Using technology to find the coordinates of the local minimum of the graph of *T*, **ii.** Minimum time occurs when $x = 4.5$ km. **[1A]**

-
- **iii.** The minimum time is 1.1 hours **[1A]**

c. i. The maximum concentration is 3 units/cm³ and it occurs 1 hour after the dose is administered. **[2A]**

d. $Q(t) > 1.25$ when $0.22 < t < 4.58$. [1M] Pain relief: 4.58 − 0.22 = 4.36 hours **[1A]**

Question 4

Int

ii. Pr(2 green) =
$$
\frac{3}{12} \times \frac{2}{11} = \frac{1}{22}
$$
 [1A]

END OF SECTION 2 SOLUTIONS