

THE SCHOOL FOR EXCELLENCE UNIT 3 & 4 MATHEMATICAL METHODS 2009 COMPLIMENTARY WRITTEN EXAMINATION 1 - SOLUTIONS

PRINTING SPECIFICATIONS

Please ensure that the paper size on your printer is selected as A4 and that you select "None" under "Page Scaling".

ERRORS AND UPDATES

Please report errors by email (admin@tsfx.com.au).

Errors and updates relating to this examination paper will be posted at <u>www.tsfx.com.au/vic/examupdates</u>

MARKING SCHEME

- (A4× $\frac{1}{2}$ ↓) means four answer half-marks rounded **down** to the next integer. Rounding occurs at the end of a part of a question.
- M1 = 1 **M**ethod mark.
- A1 = 1 Answer mark (it **must** be this or its equivalent).
- H1 = 1 consequential mark (His/Her mark...correct answer from incorrect statement or slip).

(a)
$$y = x^2 e^{-3x}$$

Using the Product Rule: $\frac{dy}{dx} = x^2 \times \frac{d}{dx} (e^{-3x}) + e^{-3x} \times \frac{d}{dx} (x^2)$ M1
 $= (x^2 \times -3e^{-3x}) + (e^{-3x} \times 2x)$ A1
 $= e^{-3x} (-3x^2 + 2x)$

$$=\frac{-3x^2+2x}{e^{3x}}$$
 and so $a = -3$ and $b = 2$ **A**($2 \times \frac{1}{2} \downarrow$)

(b) $f(x) = \frac{x^2 + 1}{x^2 - 1}$

Using the Quotient Rule:
$$f'(x) = \frac{(x^2 - 1)2x - (x^2 + 1)2x}{(x^2 - 1)^2}$$
 M1
$$= \frac{2x(x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2}$$
$$= \frac{-4x}{(x^2 - 1)^2}$$
A1

Therefore,
$$f'(2) = -\frac{8}{9}$$
 H1

Total = 6 marks

QUESTION 2

(a)
$$P(x) = x^4 + x^3 + ax^2 - x + b$$

 $P(1) = 0 \text{ and so } 1 + 1 + a - 1 + b = 0.$
Therefore $a + b = -1$ (i)
 $P(-2) = 12 \text{ and so } 16 - 8 + 4a + 2 + b = 12.$
Therefore $4a + b = 2$ (ii)
Subtracting (i) from (ii) gives $3a = 3$ and so $a = 1$ as required.
Substituting $a = 1$ into (i) gives $1 + b = -1$ and so $b = -2$ as required.

(b) Knowing that (x-1)(x+1) are factors of P(x) then dividing P(x) by $x^2 - 1$ gives

$$x^{2}-1 \quad)x^{4}+x^{3}+x^{2}-x-2 \qquad \qquad M1$$

$$\frac{x^{4}+0x^{3}-x^{2}}{x^{3}+2x^{2}-x}$$

$$\frac{x^{3}+0x^{2}-x}{2x^{2}-2}$$

$$\frac{2x^{2}-2}{0}$$

The factors of P(x) are $(x-1)(x+1)(x^2+x+2)$

A1

Total = 4 marks

QUESTION 3

 $\log_{4}(x) - \log_{4}(x-4) = 1$ $\log_{4}\left(\frac{x}{x-4}\right) = \log_{4} 4$ M1 $\frac{x}{x-4} = 4$ A1 4x - 16 = x $x = \frac{16}{3}$ a = 16 and b = 3A1

Total = 3 marks

QUESTION 4

(a)	$2\pi \div \left(\frac{\pi}{8}\right) = 16$ hours	A1
(b)	25° C	A1
(C)	35° C when <i>t</i> = 8 (8.00 am)	A1

Total = 3 marks

(a) Dilation by a factor of either $\sqrt{2}$ from the *x*-axis **or** by a factor 0.5 from the *y*-axis; Reflection in the *x*-axis; Translations 2 to the left and 3 up

(Order is important with the translations coming last).

A2 (
$$4 \times \frac{1}{2} \downarrow$$
)
-1 if incorrect order

Vertex clearly at (2, 3); *y*-intercept (0, 1); *x*-intercept (-2.5, 0); Shape.

A2 ($4 \times \frac{1}{2} \downarrow$)

(c)
$$f(x) = 3 - \sqrt{(4-2x)}$$
 M1
Interchanging x for y and vice-versa gives $x = 3 - \sqrt{(4-2y)}$

$$x - 3 = -\sqrt{(4 - 2y)}$$

Squaring both sides:
$$4-2y = (x-3)^2$$
 and so $2y = 4-(x-3)^2$
 $f^{-1}(x) = 2 - \frac{1}{2}(x-3)^2$ for $x \in (-\infty, 3]$ A1 + A1

Total = 7 marks

$$V = \frac{4}{3}\pi r^{3}$$

$$\frac{dV}{dt} = 16\pi \text{ and } \frac{dV}{dr} = 4\pi r^{2}$$

$$\frac{dr}{dt} = \frac{dV}{dt} \times \frac{dr}{dV}$$

$$= 16\pi \div 4\pi r^{2}$$

$$= \frac{16\pi}{4\pi r^{2}}$$

$$= \frac{4}{400} \text{ at } r = 20$$

$$M1$$

Answer: 0.01 cm/minute

A1

Total = 3 marks

QUESTION 7

E(aX+b) = aE(X)+b	M1
E(Y) = E(4X - 5) = 4E(X) - 5	
$= 4 \times 10 - 5$ = 35	A1
Variance $(aX + b) = a^2$ Variance (X)	

Variance (Y) = Variance (4X - 5)= 4^2 Variance (X) = 16×2 = 32

A1

Total = 3 marks

(a)

A1 The points (-1,2) and (1,8) should be filled in and the points (-1,0) and (1,0) empty.

- A1 Horizontal lines.
- A1 Oblique lines.
- (b) The area under the curve must be 1 for a probability density function. There are two triangles whose area needs to be found: $\left(\frac{1}{2} \times 1 \times 2k\right) + \left(\frac{1}{2} \times 1 \times 8k\right) = k + 4k = 5k$

Hence 5k = 1 and so k = 0.2

(c) The equation of the straight line for the interval [- 1, 0) is y = -0.4x and the equation of the straight line for the interval [0, 1] is y = 1.6x. The mean is given by $\int x \times g(x) dx$.

Mean =
$$\int_{-1}^{0} -0.4x^2 dx + \int_{0}^{1} 1.6x^2 dx$$
 M1 for two "bits"
= $-\left[\frac{0.4}{3}x^3\right]_{-1}^{0} + \left[\frac{1.6}{3}x^3\right]_{0}^{1}$
= $\left(0 + \frac{0.4}{3}\right) + \left(\frac{1.6}{3} - 0\right)$
= $\frac{2}{3}$ A1

Total = 6 marks

A1

(a) If
$$f(x) = \sqrt{(x+2)}$$
 then $f'(x) = \frac{1}{2\sqrt{(x+2)}}$ A1

At
$$x = -1$$
, $y = 1$ and $f'(-1) = \frac{1}{2\sqrt{(-1+2)}} = \frac{1}{2}$ H1

Equation of tangent:
$$y-1 = \frac{1}{2}(x+1)$$
 and so $2y = x+3$.

(b) Area required
$$= \int_{-3}^{-1} \left(\frac{1}{2}x + \frac{3}{2}\right) dx - \int_{-2}^{-1} \sqrt{(x+2)} dx$$

$$= \left[\frac{x^{2}}{4} + \frac{3x}{2}\right]_{-3}^{-1} - \int_{-2}^{-1} (x+2)^{0.5} dx$$

$$= \left(\frac{1}{4} - \frac{3}{2}\right) - \left(\frac{9}{4} - \frac{9}{2}\right) - \left[\frac{1}{1.5}(x+2)^{1.5}\right]_{-2}^{-1}$$

$$= 1 - \frac{2}{3}(1 - 0)$$

$$= \frac{1}{3}$$
A1

Total = 5 marks

END OF SOLUTIONS TO EXAMINATION 1