

THE SCHOOL FOR EXCELLENCE UNIT 3 & 4 MATHEMATICAL METHODS 2009 COMPLIMENTARY WRITTEN EXAMINATION 2 - SOLUTIONS

PRINTING SPECIFICATIONS

Please ensure that the paper size on your printer is selected as A4 and that you select "None" under "Page Scaling".

ERRORS AND UPDATES

Please report errors by email (admin@tsfx.com.au).

Errors and updates relating to this examination paper will be posted at <u>www.tsfx.com.au/vic/examupdates</u>

MARKING SCHEME (EXTENDED ANSWER QUESTIONS)

- (A4× $\frac{1}{2}$ ↓) means four answer half-marks rounded **down** to the next integer. Rounding occurs at the end of a part of a question.
- M1 = 1 **M**ethod mark.
- A1 = 1 Answer mark (it **must** be this or its equivalent).
- H1 = 1 consequential mark (His/Her mark...correct answer from incorrect statement or slip).

1	2	3	4	5	6	7	8	9	10	11
D	С	D	Е	Е	С	А	С	С	D	В

SECTION 1 – MULTIPLE CHOICE QUESTIONS

12	13	14	15	16	17	18	19	20	21	22
E	D	А	С	В	D	Е	А	А	E	В

The vertical asymptote of a rational function occurs when the denominator (bottom line) of the fraction is zero. So (x+b) must be the bottom line. The rest of the equation (ignoring the fraction) must read y = a for the horizontal asymptote.

The answer is D.

QUESTION 2

The graph of $f(x) = 3x^2 + 18x + 1$ is shown below.

An inverse function exists if the function is one-to-one. The turning point of f(x) occurs at x = -3 so any interval to the left of this value, or right of it, will ensure that the function is one-to-one.

The answer is C.

QUESTION 3

Because the graph touches the *x*-axis at x = b there must be a factor of $(x-b)^2$ in the equation.

 $\pm (x-c)$ is also a factor as is $\pm (x-a)$. The choices are between **D** or **E**.

Y Intercept:

Substituting x = 0 into $y = (x - a)(x - b)^2(x - c)$ gives the value ab^2c which is negative as a < 0. As the graph cuts the *y*-axis at a negative value, this is consistent with option D.

The answer is D.

$$g(h(x)) = \log_e \left(\frac{1}{|x+1|} + 1 - 1\right)$$
$$= \log_e \left(\frac{1}{|x+1|}\right)$$
$$= \log_e 1 - \log_e (|x+1|)$$
$$= -\log_e (|x+1|)$$

The domain of g(h(x)) is the same as the domain of h(x) which is $\mathbf{R}/\{-1\}$.

The answer is E.

QUESTION 5

Let $m = a^x$ in the equation $a^{2x} - 5a^x + 4 = 0$.

Then $m^2 - 5m + 4 = 0$ and so (m-4)(m-1) = 0.

Therefore m = 4 and so $a^x = 4$ which means that $x = \log_a 4$

Also m = 1 and so $a^x = 1$ which means that $x = \log_a 1 = 0$.

The answer is E.

QUESTION 6

 $\log_e(x^2)$ is defined for $R / \{0\}$ and $\log_e(1-x)$ is defined for $(-\infty, 1)$. The expression is defined for the intersection of these two sets which is $(-\infty, 0) \cup (0, 1)$.

The answer is C.

QUESTION 7

 $4\log_3(x-1) + 2 = \log_3(x-1)^4 + 2\log_3 3$

$$= \log_3 (x-1)^4 + \log_3 3^2$$

= $\log_3 (x-1)^4 + \log_3 9$
= $\log_3 9(x-1)^4$

Therefore $3^{4\log_3(x-1)+2} = 3^{\log_3 9(x-1)^4} = 9(x-1)^4$

The answer is A.

$$|a^{2}-4a| = a^{2}-4a$$

= -(a²-4a) = 4a-a²

To solve $|a^2 - 4a| = 4$, find the points of intersection of the graphs $y = |a^2 - 4a|$ and y = 4.

Either $a^2 - 4a = 4$ or $4a - a^2 = 4$

If
$$a^2 - 4a = 4$$
 then $a^2 - 4a - 4 = 0$ so $a = \frac{4 \pm \sqrt{32}}{2} = 2 \pm 2\sqrt{2}$

If
$$4a - a^2 = 4$$
 then $a^2 - 4a + 4 = 0$. Hence $a = 2$.

From the graph, $|a^2 - 4a| \ge 4$ if $a \ge 2 + 2\sqrt{2}$ or a = 2 or $a \le 2 - 2\sqrt{2}$

The answer is C.

QUESTION 9

 $2\sin^{2}(\theta) = 3 - 3\cos(\theta)$ $2(1 - \cos^{2}(\theta)) = 3 - 3\cos(\theta)$ $2 - 2\cos^{2}(\theta) = 3 - 3\cos(\theta)$ $2\cos^{2}(\theta) - 3\cos(\theta) + 1 = 0$ $(2\cos(\theta) - 1)(\cos(\theta) - 1) = 0$

Hence $\cos(\theta) = 0.5$ or $\cos(\theta) = 1$ For $-\pi \le \theta \le \pi$, $\cos(\theta) = 0.5$ has solutions $-\frac{\pi}{3}, \frac{\pi}{3}$ and $\cos(\theta) = 1$ has solution 0.

The answer is C.

If $f(x) = a\sin(x) - b\sqrt{3}\cos(x)$ then $f'(x) = a\cos(x) + b\sqrt{3}\sin(x)$ $0 = a\cos(x) + b\sqrt{3}\sin(x)$ at any turning points. $b\sqrt{3}\sin(x) = -a\cos(x)$ $\frac{\sin(x)}{\cos(x)} = \tan(x) = -\frac{a}{b\sqrt{3}}$ Now $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ and so $-\frac{a}{b\sqrt{3}} = \sqrt{3}$

Therefore a = -3b and so the answer is either alternative C or D.

Only alternative D gives a minimum value at the required value of x.

The answer is D.

QUESTION 11

Using the Quotient Rule:

$$\frac{dy}{dx} = \frac{x \times \frac{d}{dx} (\log_e(2x)) - \log_e(2x) \times \frac{d}{dx}(x)}{x^2}$$
$$= \frac{x \times \frac{2}{2x} - \log_e(2x) \times 1}{x^2}$$
$$= \frac{1 - \log_e(2x)}{x^2}$$

The answer is B.

QUESTION 12

If
$$y = x^3 - 4x^2 + 7x - 5$$
 then $\frac{dy}{dx} = 3x^2 - 8x + 7$
At $x = 2$, $\frac{dy}{dx} = 3 \times 4 - 8 \times 2 + 7 = 3$

Gradient of tangent is 3. Therefore, gradient of the normal is $-\frac{1}{3}$.

As
$$y = 1$$
 at $x = 2$:

Equation of the normal is: $y - 1 = -\frac{1}{3}(x - 2)$

$$3y - 3 = -x + 2$$
$$3y + x - 5 = 0$$

The answer is E.

$$\int_{3}^{1} (5-3f(x))dx = -\int_{1}^{3} (5-3f(x))dx$$
$$= \int_{1}^{3} (3f(x)-5)dx$$
$$= 3\int_{1}^{3} f(x)dx - \int_{1}^{3} 5dx$$
$$= 3 \times 10 - [5x]_{1}^{3}$$
$$= 30 - (15-5)$$
$$= 20$$

The answer is D.

QUESTION 14

The function g(x) is obtained from f(x) through the following three transformations:

- A dilation from the *x* axis (or parallel to the *y* axis) by a factor of 5 which results in the minimum value being at $(2\sqrt{3}, -5)$.
- A reflection in the *y* axis which now means that the minimum is at $(-2\sqrt{3}, -5)$.
- Finally there is a translation of 1 unit to the right which results in the minimum now being at $(-2\sqrt{3}+1, -5)$

The answer is A.

QUESTION 15

$$\int \left(\frac{f'(x)}{f(x)}\right) dx = \log_e |f(x)| \text{ and so } \int \left(\frac{2}{1-2x} + e^{3x+1}\right) dx = -\log_e |2x-1| + \frac{1}{3}e^{3x+1} + c$$

The answer is C.

The graph shown above resembles that of a cubic function and so its derivative function will resemble a parabola.

The gradient on the left and right of the function is positive and so the best alternative is shown alongside.

The answer is B.

QUESTION 17

 $f(x) = (2x-1)e^{3x}$

Substitute x = 0 into $(2x - 1) e^{3x}$: $-e^0 = -1$

Substitute x = 2 into $(2x - 1) e^{3x}$: $3e^{6}$

The average rate of change is
$$\frac{3e^6 - (-1)}{2 - 0} = \frac{3e^6 + 1}{2}$$

The answer is D.

QUESTION 18

If two events X and Y are independent then $Pr(X \cap Y) = Pr(X).Pr(Y)$.

Now $A \cap B = \{2, 4\}, A \cap C = \{3\}, B \cap C = \{6\}, A \cap D = \{1, 2, 5\}, B \cap D = \{2, 10\}$

Test whether:

$$Pr(A).Pr(B) = Pr(A \cap B)? \quad \text{Left side} = \frac{5}{10} \times \frac{5}{10} = \frac{1}{4} \text{ Right side} = \frac{2}{10} \text{ No!}$$

$$Pr(A).Pr(C) = Pr(A \cap C)? \quad \text{Left side} = \frac{5}{10} \times \frac{3}{10} = \frac{3}{20} \text{ Right side} = \frac{1}{10} \text{ No!}$$

$$Pr(B).Pr(C) = Pr(B \cap C)? \quad \text{Left side} = \frac{5}{10} \times \frac{3}{10} = \frac{3}{20} \text{ Right side} = \frac{1}{10} \text{ No!}$$

$$Pr(A).Pr(D) = Pr(A \cap D)? \quad \text{Left side} = \frac{5}{10} \times \frac{4}{10} = \frac{1}{5} \text{ Right side} = \frac{3}{10} \text{ No!}$$

$$Pr(B).Pr(D) = Pr(B \cap D)? \quad \text{Left side} = \frac{5}{10} \times \frac{4}{10} = \frac{1}{5} \text{ Right side} = \frac{2}{10} = \frac{1}{5} \text{ Yes!}$$

The answer is E.

QUESTION 19

Probability of rain on Wednesday = $0.8 \times 0.8 + 0.2 \times \frac{p}{100}$ 64 2p

$$=\frac{04}{100}+\frac{2p}{1000}$$

 $\frac{65}{100} = \frac{64}{100} + \frac{2\,p}{1000} \text{ and so } p = 5\,.$

The answer is A.

Binomial Distribution with np = 5 and npq = 4So 5q = 4 (substituting np = 5). Therefore $q = \frac{4}{5}$ which gives $p = \frac{1}{5}$ If $p = \frac{1}{5}$ then $\frac{n}{5} = 5$ and so n = 25 $\mu - \sigma = 5 - 2 = 3$ and $\mu + \sigma = 5 + 2 = 7$ and so find the Binomial cdf for $3 \le X \le 7$. This is binomcdf(25, 0.2, 7) – binomcdf(25, 0.2, 2) = 0.8909 – 0.0982 = 0.7927

The answer is A.

QUESTION 21

Normalcdf (4, 5, 5, 0.5) = 0.4772499

$$\Pr(X > 4 \mid X < 5) = \frac{0.4772499}{0.5} = 0.954499$$

The answer is E.

QUESTION 22

The sum of the probabilities is 1.

Therefore $\int_{0}^{b} ax \, dx = \left[\frac{a}{2}x^{2}\right]_{0}^{b} = 1$ and so $\frac{ab^{2}}{2} = 1$ (Equation 1) Now $\int_{0}^{\frac{4}{3}} ax \, dx = 0.5$ $\left[\frac{a}{2}x^{2}\right]_{0}^{\frac{4}{3}} = 0.5$ and so $\frac{a}{2} \times \frac{16}{9} = \frac{1}{2}$. (Equation 2) Hence $a = \frac{9}{16}$ Substituting for a in equation 1 gives $b^{2} = \frac{32}{9}$ and so $b = \frac{4\sqrt{2}}{3}$.

The answer is B.

SECTION 2 – EXTENDED ANSWER QUESTIONS

QUESTION 1

a.
$$f'(x) = (x+a) \times 2(x-b) + 1 \times (x-b)^2$$
 (using the Product Rule)
 $= (x-b)[2(x+a) + (x-b)]$
 $= (x-b)(3x+2a-b)$
 $= 0 \text{ if } x = b \text{ or } x = \frac{b-2a}{3}$

Since f'(1) = 0 then *b* could be 1. If this is the case, see if a = 4 satisfies the other stationary value. $-\frac{7}{3} = \frac{1-2a}{3}$ so -7 = 1-2a which means that a = 4, as req. M1

b.
$$f(x) = (x+4)(x-1)^2 + 2$$

When $x = 1$, $y = (1+4)(1-1)^2 + 2 = 2$ and so the turning point is at $(1, 2)$.

c. When
$$x = -\frac{7}{3}$$
, $y = (-\frac{7}{3} + 4)(-\frac{7}{3} - 1)^2 + 2 = 20.52$ and so $c = 20.52$ **A1**

d. The lines y = 2 and y = 20.52 have been drawn showing that each of them meets the graph at two points.

If 2 < m < 20.52 then the equation f(x) = m will have three distinct solutions.

$$A4 \times \frac{1}{2} \downarrow$$
 (2 , < , <, 20.52)

e. If the turning points of f(x) are at (1, 2) and $\left(-\frac{7}{3}, 20.52\right)$ then the horizontal distance between them is $1 - -\frac{7}{3} = \frac{10}{3}$ units. This would need to be multiplied by 3 to give the required result of being 10 units apart. Hence k = 3.

M1 (horizontal distance idea) A1 (k = 3)

f. (-7, 20.52) and (3, 2) A2 (1 for each pair)

Total = 12 marks

A1

QUESTION 2

a. Total area = Two end semi-circles + flat surface + curved surface **M1**

$$A = 2 \times (\frac{1}{2}\pi r^{2}) + 2r \times h + \frac{1}{2} \times 2\pi r h$$

$$A = \pi r^{2} + 2rh + \pi r h$$
A1

b. Volume =
$$500 = \frac{1}{2}\pi r^2 h$$
 and so $h = \frac{1000}{\pi r^2}$ A1

$$A = \pi r^{2} + 2rh + \pi r h$$

= $\pi r^{2} + (2r + \pi r)h$
= $\pi r^{2} + (2r + \pi r) \times \frac{1000}{\pi r^{2}}$ M1

$$=\pi r^{2} + (2 + \pi)r \times \frac{1000}{\pi r^{2}}$$
 which when cancelling the r gives

$$A = \pi r^{2} + \frac{1000(2 + \pi)}{\pi r}$$
, as required.

c.
$$A = \pi r^{2} + \frac{1000(2+\pi)}{\pi} \times r^{-1}$$

 $\frac{dA}{dr} = 2\pi r - \frac{1000(2+\pi)}{\pi} \times r^{-2}$ H1

=0 for a minimum value

Therefore
$$2\pi^2 r^3 = 1000(2+\pi)$$
 and so $r = \left(\frac{1000(2+\pi)}{2\pi^2}\right)^{\frac{1}{3}} = 6.39 \text{ cm}$ A1

1

d. 384.40 cm² (do not accept 384.4 cm²)

e.
$$C = p(\pi r^2 + 2rh) + q \times \pi r \times \frac{1000}{\pi r^2} = p(\pi r^2 + 2r \times \frac{1000}{\pi r^2}) + q \times \pi r \times \frac{1000}{\pi r^2}$$
 M2

(Give a method mark for each part, curved and flat)

$$\therefore C = p\left(\pi r^2 + \frac{2000}{\pi r}\right) + \frac{1000}{r}q$$

f.
$$\frac{dC}{dr} = p \left(2\pi r - \frac{2000}{\pi r^2} \right) - \frac{1000}{r^2} q$$
 H1

For minimum cost
$$\frac{dC}{dr} = 0$$
 and so $2\pi r p = \frac{2000 p + 1000\pi q}{\pi r^2}$ M1

Hence
$$r = \left(\frac{1000(2p+q\pi)}{2\pi^2 p}\right)^{\frac{1}{3}}$$
 A1

h. Since
$$h = \frac{1000}{\pi r^2}$$
 then if $h = 10$, $r = \sqrt{\frac{100}{\pi}}$ (= 5.64 cm to 2 decimal places). **A1**

The minimum cost occurs when r = 5.64 cm, and is approximately \$9396. **A1**

Total = 16 marks

a. Invnorm(0.8) =
$$\frac{94 - p}{q}$$
 and Invnorm(0.99) = $\frac{122 - p}{q}$ **M1**

0.842q = 94 - p and 2.326q = 122 - p A1

b. (i) 0.842q = 94 - p

(ii) 2.326q = 122 - p

Taking (i) from (ii) gives 1.484q = 28 and so q = 18.8679... which rounds to 18.9 as required.

Substituting for *q* in (i) gives p = 78.113 which rounds to 78.1, as required. **M1** Normalcdf(-10^{10} , 80, 78.1, 18.9) = 0.5400 so the answer is 54% **A1**

c. Normalcdf (100, 10^{10} , 78.1, 18.9) = 0.12328

Required probability =
$$\frac{0.12328}{0.46}$$

$$= 0.268$$

d.

Recorded speed of car	Amount of penalty	Probability
Below 80 km/h	zero	0.54
From 80 km/h to under 100 km/h	\$220	0.34
From 100 km/h to under 110 km/h	\$440	0.08
Over 110 km/h	\$500	0.04 or 0.05

$$(\mathbf{A} 4 \times \frac{1}{2} \downarrow)$$

A1

A1

e. Mean = $\frac{0 \times 0.54 + \$220 \times 0.34 + \$440 \times 0.08 + \$500 \times 0.04}{0.46}$ M1 = $\frac{(0 + 68 + 35.2 + 20)}{0.46}$ = $\frac{123.2}{0.46}$ = \$270 to the nearest \$10 (or \$280 if 0.05 was used) A1 f.The proportion of the population exceeding 100 km/h is 0.12 (from the table).Hence 0.12x = 48 and so $x = \frac{48}{0.12} = 400$.M1400 cars pass in the hour.A1

If students use 0.13 then the mark scheme is:

The proportion of the population exceeding 100 km/h is 0.13 (from the table).

Hence 0.13x = 48 and so $x = \frac{48}{0.13} = 369.23$. M1

369 (or 370) cars pass in the hour.

g. Pr(Speeding) = 0.46

Binomial Distribution: $(0.46+0.54)^6$

Pr(at least two) = Pr(2) + Pr(3) + Pr(4) + Pr(5) + Pr(6) or 1 - [Pr(0) + Pr(1)]
= 1 -
$$\begin{bmatrix} 0.54^6 + {6 \choose 1} \times 0.54^5 \times 0.46 \end{bmatrix}$$

= 0.8485 A1

Total = 16 marks

A1

QUESTION 4

a. i.
$$y = e^{\cos x}$$

Let $u = \cos(x)$ and so $\frac{du}{dx} = -\sin(x)$
 $y = e^{u}$ and so $\frac{dy}{du} = e^{u}$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $= e^{\cos(x)} \times -\sin(x)$
 $= -\sin(x)e^{\cos(x)}$ A1

ii.
$$2\int_{0}^{\pi} \sin(x)e^{\cos(x)}dx = 2\left[-e^{\cos(x)}\right]_{0}^{\pi}$$

= $2(-e^{-1}+e^{1})$ A1

b. i. $f(x) = \sin(x)e^{\cos(x)} = uv$ Let $u = \sin x$ and $v = e^{\cos x}$ then $\frac{du}{dx} = \cos(x)$ and $\frac{dv}{dx} = -\sin(x)e^{\cos(x)}$ M1 $f'(x) = v\frac{du}{dx} + u\frac{dv}{dx} = \cos(x)e^{\cos(x)} - \sin^2(x)e^{\cos(x)}$ A1

ii. If
$$f'(x) = 0$$
 then $\cos(x)e^{\cos(x)} - \sin^2(x)e^{\cos(x)} = 0$
Therefore $e^{\cos(x)}(\cos(x) - \sin^2(x)) = 0$
Now $e^{\cos(x)}$ can never be zero so $\cos(x) - \sin^2(x) = 0$
Hence $\cos(x) - (1 - \cos^2(x)) = 0$ and so $\cos^2(x) + \cos(x) - 1 = 0$ M1
Using the quadratic formula, $\cos(x) = \frac{-1 \pm \sqrt{1+4}}{2}$ A1

One of these values corresponds with what needed to be found.

c.
$$f(g(x)) = \sin \sqrt{(x^2 + 1)} \cdot e^{\cos \sqrt{(x^2 + 1)}}$$
 A1

d. i.

Intercepts (0, 1.44), (2.98, 0), (6.20, 0). Coordinate format not necessary here. **A1** Shape with two points of intersection at approximately (0.7, 1.3) and (5.3, -1.4) **H1**

ii. (0.65, 1.34) and (5.33, 1.46)

$$e. \quad \int_{0.65}^{2.98} [f(x) - g(f(x))] dx + \int_{2.98}^{\pi} f(x) dx + \int_{5.33}^{6.20} [f(x) - g(f(x))] dx + \left| \int_{6.20}^{2\pi} f(x) dx \right|_{6.20}^{2\pi}$$

The two "difference integrals" with correct lower terminals.M1All four integrals correct.A1

Total = 14 marks

A1