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This book presents: 
 

• correct answers 
• worked solutions, giving you a series of points to show you how to work 

through the questions 
• mark allocation details. 
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Question 1 
 

a. Let xe
xy 2sin

= . Find 
dx
dy . 

2 marks 
 

Solution 
 

Using the quotient rule 
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Mark allocation 
 

• 1 method mark for knowing to use quotient rule 
• 1 answer mark for correct derivative 

 
 
b. If xexf =)( , find ).16(f ′  

2 marks 
 

Solution 

Using chain rule gives xe
x

xf
2

1)( =′ .  

 

Substitute in 416

8
1

162
1,16 eegivesx ==  

 
 
Mark allocation 
 

• 1 mark for correct chain rule 
• 1 mark for correct answer 
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Question 2 
 

a. Write 
1
13

+
−

x
x  in the form b

x
a

+
+1

. State the values of a and b. 

2 marks 
 

Solution 
 

Re-expression or otherwise gives 
 

 
 
 

so 3,4 =−= ba  
 

Mark allocation 
 

• 1 mark for correct value of a 
• 1 mark for correct value of b 

 

b. Sketch the graph of { }
1
13)(,1\:

+
−

=→−
x
xxfRRf . Label all axis intercepts as 

coordinates. Label each asymptote with its equation. 
 
 

 
2 marks 

Solution 

 
 

 
Mark allocation 
 

• 1 mark for shape 
• 1 mark for all correct and labelled
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Question 3 

Sketch the graph of 2
8

cos2 +





=

xy π  for ]8,8[−∈x . Label axis intercepts and endpoints 

with their coordinates.                     
 
 
 

3 marks 
Solution 

 

amplitude is 2 and period 16

8

22
== π

ππ
n

 

graph has been shifted up 2 units 
 

 
 

Mark allocation 
 

• 1 mark for correct shape and position of graph 
• 1 mark for showing one cycle 
• 1 mark for graph correct and points labelled 
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Question 4  
 

Ciara is a very good netballer. She plays goal shooter in her team and knows that from past 
experience her probability of scoring a goal depends on the success of her previous attempt. 
She knows that if she has scored a goal previously then her probability of scoring a goal on 
the next attempt is 0.7. If she is unsuccessful on the previous attempt, her probability of being 
unsuccessful on the next attempt is 0.8. 

 
The probabilities associated with each state are represented in the transition matrix: 

 

 







8.03.0
2.07.0

  

 
a. If she has scored a goal, what is the chance of her not scoring on her next attempt? 

 
1 mark 

 
Solution 

 
This corresponds to the element in the first column, bottom row of the matrix — 0.3 

 
 
            
   

 







8.03.0
2.07.0

 

 
 

Mark allocation 
 
• 1 mark for correct answer  

 
 

b. She has five shots at goal. Her first attempt is a goal. What is the probability that it takes 
her until her final shot to score another goal? 

 
2 marks  

 
Solution 

 
0384.02.08.08.03.01)Pr( =××××=GMMMG  

 
Mark allocation 

 
• 1 mark for working 
• 1 mark for answer 

 
  

     old 
 G      M 

 new   G 
         M 
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c. Find the probability of Ciara scoring a goal in the long term. 
 

2 marks 
 

Solution 
 
This involves calculating the steady state probabilities 
 

using the general matrix 







−

−
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1

1
 

the 4.0
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+

=
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=
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Mark allocation 
 

• 1 mark for using steady state matrix 
• 1 mark for answer 
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Question 5 
 

The shaded area is equal to 
2
1 . Find the value of c. 

 
 

3 marks 
Solution 
 
Set up the integral gives 
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Mark allocation 
 

• 1 mark for setting up correct integral 
• 1 mark for correct antidifferentiation 
• 1 mark for correct answer 
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Question 6 
 
The duration of telephone calls to the home loan department of a mortgage broker is a random 
variable X minutes with probability density function  
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a. Find )84Pr( << X  

 
2 marks 

 
Solution 
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Mark allocation 

 
• 1 mark for setting up the correct integral 
• 1 mark for correct answer 

 
 

b. Find the probability that a telephone call will last more than 12 minutes. 
 

2 marks 
 

Solution 
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Mark allocation 

 
• 1 mark for setting up expression involving integral 
• 1 mark for answer 
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c. Find the value of a such that 90% of telephone calls last less than a  minutes. 
 

3 marks 
 

Solution 
 

1.0log4
4

1.0log

1.0

1.0

4
19.0

9.0)Pr(

4

4

04

0

4

e

e

a

a

a

a x

a

a
e

e

ee

dxe

aX

−=

−
=

=

−=−









+−=

=

=<

−

−

−

−

∫

 

 
 

Mark allocation 
 

• 1 mark for setting up an integral 

• 1 mark for getting 1.04 =
−a

e  
• 1 mark for answer 
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Question 7 
 
Consider the function xexxfRRf 432)(,: −=→  

 
a. )(' xf  may be written in the form )()(' 324 bxaxexf x += −  where a and b are real 

constants. Find the values of a and b. 
2 marks 

 
Solution 

 
Using the product rule gives 

 

8and6
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exexxf
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Mark allocation 
 

• 1 mark for using product rule correctly 
• 1 mark for a and b both correct 
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The graph of )(xfy =  is as shown. 

 
 
b. Find the exact coordinates of the two stationary points and state their nature. 

3 marks 

Solution 
let 

 

4
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substitute back into equation for )(xf  to get y-coordinates. 
stationary point of inflexion at )0,0(  

maximum turning point at )
32
27,

4
3( 3−e  

 
Mark allocation 
 

• 1 mark for both x values correct 
• 1 mark for both y values correct 
• 1 mark for nature of the points correct 
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c. Find the equation of the tangent to the curve )(xfy =  where 1=x . 

2 marks 

Solution 
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Mark allocation 
 

• 1 mark for finding gradient 
• 1 mark for correct equation

 
 
Question 8 

A transformation is defined by the matrix 






 −
03
20

. Find the equation of the  

image of the graph of the line with the equation 53 += xy  under this transformation. 
 

2 marks 
Solution 
Need to examine the images of the points (x, y) under the matrix transformation 
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so multiplying out gives 
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so substituting into the equation  
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Mark allocation 
 

• 1 mark for setting up matrices involving points and images 
• 1 mark for answer 

 
 

Question 9 
 

For the simultaneous linear equations: 
 

 
mmyx

ymx
=−
=−

4
66

  

 
find the values of m for which the equations have infinitely many solutions. 

 
2 marks 

 
Solution 

 
In both equations re-write the equations in the form cmxy +=  

This gives  

 

14

1
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x
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For there to be an infinite number of solutions, the equations need to be identical. 

So 
m

m 4
6
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Mark allocation 
 

• 1 mark for getting 
m

m 4
6
=  

 
• 1 mark for answer 
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Question 10 
 
The graph of the function )sin()(,]2,2[: xxfRf =→− ππ  is shown below 
 

 
 

a. Part of the graph of the derivative function is drawn on the axes given. Complete the 
graph of the derivative function, f ′  on the axes given. 

x-2π -π π 2π

y

-2

-1

1

2

 
1 mark 
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Solution 

x-2π -π π 2π

y

-2

-1

1

2

 
Mark allocation 
 
• 1 mark for correct answer 

 
 
 
b. State the rule for the derivative function. 

 
2 marks 

 
Solution 

 





−∪∈−
−−∪∈

=′
)0,()2,(,cos
),2(),0(,cos
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Mark allocation 
 

• 1 mark for indicating a cos function with domain ),0( π  
• 1 mark for correct hybrid function 
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