MAV Trial Examination Papers 2010 Mathematical Methods (CAS) Examination 1 SOLUTIONS

Question 1

a.
$$\Pr(A' | B) = \frac{\Pr(A' \cap B)}{\Pr(B)}$$
 1M
= $\frac{\Pr(A') \times \Pr(B)}{\Pr(B)}$, as the events are independent
= $\Pr(A')$
= 0.7 1A

b. Let *b* represent black and *w* white $Pr(bb) + Pr(ww) = \frac{2}{6} \times \frac{1}{5} + \frac{4}{6} \times \frac{3}{5}$ $= \frac{14}{30} = \frac{7}{15}$ **1M 1A**

Question 2

a.
$$f(x) = (\sin(2x)+1)^2$$

Using the chain rule,
 $f'(x) = 2(\sin(2x)+1) \times 2\cos(2x)$
 $= 4(\sin(2x)+1)\cos(2x)$
1A

Therefore

$$f'\left(\frac{\pi}{2}\right) = 4\left(\sin\left(\pi\right) + 1\right)\cos\left(\pi\right)$$
$$= 4\left(0+1\right) \times -1$$
$$f'\left(\frac{\pi}{2}\right) = -4$$
1A

b. i.
$$y = (x^2 - 2x)e^x$$

Using the product rule,
Let $u = (x^2 - 2x)$, therefore $\frac{du}{dx} = 2x - 2$
 $v = e^x$, therefore $\frac{dv}{dx} = e^x$
 $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
 $\frac{dy}{dx} = (x^2 - 2x)e^x + (2x - 2)e^x$
 $\frac{dy}{dx} = (x^2 - 2)e^x$
1A

b. ii. From the previous answer,

$$\frac{d((x^2-2x)e^x)}{dx} = x^2e^x - 2e^x$$

Take the integral of both sides, with respect to x.
 $(x^2-2x)e^{2x} + c = \int (x^2e^x) dx - 2e^x$, where c is a constant. 1M
Rearrange to make $\int (x^2e^x) dx$ the subject
 $\int (x^2e^x) dx = (x^2-2x+2)e^x + c$ 1A

Note that any value of c (including zero) is acceptable, as an antiderivative is asked for.

Question 3

a. i. Area
$$= \int_{1}^{7} (1 + x^{-2}) dx$$

 $= \left[x - \frac{1}{x} \right]_{1}^{7}$
 $= \left[\left(7 - \frac{1}{7} \right) - (1 - 1) \right]$
1A

Area = $6\frac{6}{7} = \frac{48}{7}$, as required

a. ii. Average value =
$$\frac{1}{7-1} \int_{1}^{7} f(x) dx$$

Average value = $\frac{1}{6} \times \frac{48}{7} = \frac{8}{7}$ 1A

b.

	Domain	Range
f	$(0,\infty)$	★ (l,∞)
f^{-1}	(1,∞) ►	$\bigstar (0,\infty)$

Domain of f^{-1} is $(1,\infty)$.

To find the rule of f^{-1} , interchange the x and y values and make y the subject.

$$x = 1 + \frac{1}{y^{2}}$$

$$y = \pm \frac{1}{\sqrt{x-1}}$$
. However, since the domain of f^{-1} is $(1, \infty)$, reject the negative case.
$$f^{-1}(x) = \frac{1}{\sqrt{x-1}}$$
1A

1A

Given that:	$\frac{dV}{dt} = 32 \text{ m}^3/\text{hour}$	eqn(1)	
Know that:	$V = \pi r^2 h$		
When $r = 4 \text{ m}$, $V = 16\pi h$,		
	$\frac{dV}{dh} = 16\pi$	eqn(2)	1M
Need:	$\frac{dh}{dt} = \frac{dh}{dV} \times \frac{dV}{dt}$		
Substitute equ	tations (1) and (2)		1 M
$\frac{dh}{dt} = \frac{1}{16\pi} \times 32$	2		
$\frac{dh}{dt} = \frac{2}{\pi}$ m/ho	ur		1A

Question 5

 $np = 3 \text{ and variance, } npq = \frac{3}{4}$ Hence, $3q = \frac{3}{4}$, $q = \frac{1}{4}$ $p = \frac{3}{4} \text{ and } n = 4$ $Pr(X = 2) = {}^{4}C_{2} \left(\frac{3}{4}\right)^{2} \left(\frac{1}{4}\right)^{2}$ $= 6 \times \frac{9}{16} \times \frac{1}{16} = \frac{27}{128}$ 1M III

Question 6

a. $f(a) = f(b)$	
2a = 30 - 3b	
$b = \frac{30 - 2a}{3} = 10 - \frac{2}{3}a$	1A
b. Width = $2a$	

Length = $\left(10 - \frac{2}{3}a\right) - a$ = $10 - \frac{5}{3}a$ 1M

Area = Length \times width

$$A = 2a\left(10 - \frac{5}{3}a\right)$$

 $A = 20a - \frac{10a^2}{3}$, as required

c. For the maximum area, $\frac{dA}{da} = 0$.

$$20 - \frac{20a}{3} = 0$$

$$a = 3$$

The area of the inscribed rectangle will be a maximum when $a = 3$. 1A
Maximum area = $A(3)$

$$A(3) = 20 \times 3 - \frac{10 \times 3^2}{3}$$

$$= 30$$

The maximum area is 30 units². 1A

 $T\left(\begin{bmatrix} x\\ y \end{bmatrix}\right) = \begin{bmatrix} 2 & 0\\ 0 & -1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} + \begin{bmatrix} -\pi\\ 3 \end{bmatrix}$ Let (x', y') be the image of (x, y) under T. $x' = 2x - \pi$, hence $x = \frac{x' + \pi}{2}$... eqn(1) y' = -y + 3, hence y = 3 - y' ... eqn(2) 1M Substitute equations (1) and (2) in $y = \cos(x)$. $3 - y' = \cos\left(\frac{x' + \pi}{2}\right)$ 1M

$$y' = 3 - \cos\left(\frac{1}{2}(x' + \pi)\right)$$

Hence, $h(x) = -\cos\left(\frac{1}{2}(x + \pi)\right) + 3$ 1A

Alternative solution

The solution is of the form $h(x) = a \cos(n(x-h)) + k$, where *a*, *n*, *h* and *k* are real constants. By recognition, *T* involves the following sequence of transformations:

- A dilation of factor 2 from the y-axis, hence $n = \frac{1}{2}$
- A reflection in the x-axis, hence a = -1 1M
- Translations π units left and 3 units up, hence $h = -\pi$ and k = 3. **1M**

Hence,
$$h(x) = -\cos\left(\frac{1}{2}(x+\pi)\right) + 3$$
 1A

a.
$$f'(x) = \frac{2}{3(x-1)^{\frac{1}{3}}}, x \neq 1$$
 1A

b. Shape and Asymptote at x = 1

Open circles for endpoints
$$\left(0, -\frac{2}{3}\right)$$
 and $\left(2, \frac{2}{3}\right)$ 1A

$$\begin{bmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{bmatrix} \begin{bmatrix} x \\ 1-x \end{bmatrix} = \begin{bmatrix} x \\ 1-x \end{bmatrix}$$
1M
$$0.2x + 0.9(1-x) = x$$

$$-1.7x = -0.9$$

$$x = \frac{9}{17}$$
1A

Alternatively, for the general case with transition matrix $\begin{bmatrix} 1-a & b \\ a & 1-b \end{bmatrix}$, the long-term state matrix is given by $\begin{bmatrix} \frac{b}{a+b} \\ 1-\frac{b}{a+b} \end{bmatrix}$ 1M In this case, a = 0.8 and b = 0.9. Hence $x = \frac{0.9}{0.8 + 0.9} = \frac{9}{17}$ 1A

1A

 $g: R^+ \to R, g(x) = x - \log_e(x)$

The equation of a **tangent** to the graph of g is $y = -\frac{x}{2} + k$.

The gradient of the tangent, $g'(x) = -\frac{1}{2}$.

Therefore,
$$1 - \frac{1}{x} = -\frac{1}{2}$$

 $\frac{1}{x} = \frac{3}{2}$
 $x = \frac{2}{3}$
1M

The tangent intersects the graph of g at the point with coordinates

$$\left(\frac{2}{3}, \frac{2}{3} - \log_e\left(\frac{2}{3}\right)\right)$$
 1A

The equation of the tangent is of the form y = y = m(x - x) hence

$$y - y_{1} = m(x - x_{1}), \text{ hence}$$

$$y - \left(\frac{2}{3} - \log_{e}\left(\frac{2}{3}\right)\right) = -\frac{1}{2}\left(x - \frac{2}{3}\right)$$

$$y = -\frac{x}{2} + \frac{1}{3} + \left(\frac{2}{3} - \log_{e}\left(\frac{2}{3}\right)\right)$$

$$y = -\frac{x}{2} + 1 - \log_{e}\left(\frac{2}{3}\right)$$
Therefore, $k = 1 - \log_{e}\left(\frac{2}{3}\right)$
1A