MAV Trial Examination Paper 2010 Mathematical Methods CAS Examination 2 SOLUTIONS

Section 1	– Multiple Ch	oice				
ANSWE	RS					
1. D	2. C	3. D	4. E	5. E	6. A	7. E
8. B	9. A	10. B	11. A	12. B	13. A	14. E
15. D	16. C	17. B	18. C	19. D	20. D	21. E

22. C

SOLUTIONS

Question 1

Question 2

Domain of f^{-1} = Range of f = RRule of f^{-1} : interchange x and y values $x = 1 - 2\log_e(3y - 6)$ Solve for y

$$y = \frac{e^{\left(\frac{1-x}{2}\right)}}{3} + 2$$

$$f^{-1}: R \to R, f^{-1}(x) = \frac{1}{3}e^{\left(\frac{1-x}{2}\right)} + 2$$

Answer D

Answer C

This can be solved by recognition, or using CAS.

Answer D

f(4x) = f(x) + 2f(2) may be recognised as a property of a logarithmic function.If $f(x) = \log_e(x)$, then $f(4x) = \log_e(4x)$ $= \log_e(x) + \log_e(4)$ $= \log_e(x) + \log_e(2^2)$ $= \log_e(x) + 2\log_e(2)$ f(4x) = f(x) + 2f(2), as required

Alternatively, using CAS

 $f(x) = \log_{e}(x)$ is the only function that always satisfies the functional equation.

For a functional equation, a CAS output of 'true' indicates that it is *always* true. An output of 'false' indicates that is *never* true. Any other output indicates that it is *sometimes* true (often in the trivial case), but *not always*.

1.1 2.1 3.1 3.2 RAD A	UTO REAL
Define $f(x) = \ln(x)$	Done
f(4·x)=f(x)+2·f(2)	true
© Always TRUE for f(x)=log	g (x)
Define $f(x) = \frac{2}{x}$	Done
$f(4 \cdot x) = f(x) + 2 \cdot f(2)$	$\frac{1}{2} = \frac{2}{2} + 2$
	. 4

1.1 2.1 3.1	RAD AUTO REAL
Define $f(x) = \sqrt{2 \cdot x}$	Done
$f(4 \cdot x) = f(x) + 2 \cdot f(2)$	$2 \cdot \sqrt{2 \cdot x} = \sqrt{2 \cdot x} + 4$
Define $f(x)=2\cdot x+2$	Done
$f(4 \cdot x) = f(x) + 2 \cdot f(2)$	8·x+2=2·x+14
Define $f(x) = e^x$	Done
$f(4\cdot x) = f(x) + 2 \cdot f(2)$	$e^{4\cdot x} = e^{x} + 2 \cdot e^{2}$
	1/

🛛 😻 Edit Action Interactive	X	🖤 Edit Action Interactive
╚╬ <u>╞</u> ╠╞┝ <u>╠</u> ╝╗ <u>╘</u> ╝╱┥ ╱┼╱ ╺╴┊	»	╚┋┋╔┝╠╬╗╘╝╝┥┿┦┥
$\frac{ \mathbf{x} \mathbf{x} $		$\frac{2}{2} \frac{d^{n} + \frac{1}{2}}{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}}{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}}{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}}{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}}{d^{n} + \frac{1}{2}} \frac{d^{n} + \frac{1}{2}$
	Ļ	
Alg Standard Celz Rad di	=	Alg Standard Cply Rad 🛲

Solve
$$ax = -\frac{1}{x} + 1$$
 for x.
 $x = \frac{\sqrt{(1-4a)} + 1}{2a}$ or $x = \frac{-\sqrt{(1-4a)} + 1}{2a}$

4

For two distinct solutions 1 - 4a > 0 and $a \neq 0$.

Hence
$$\{a: -\infty < a < 0\} \cup \{a: 0 < a < \frac{1}{4}\}$$

Question 5

Answer E

$$\int_{1}^{4} (f(x)+2) dx = \int_{1}^{4} f(x) dx + \int_{1}^{4} 2 dx$$
$$= 5 + [2x]_{1}^{4}$$
$$= 5 + [8-2]$$
$$= 11$$

This can be done by hand or using CAS. $2\tan(x)+1=3$ $\tan(x) = 1$ $x = \frac{\pi}{4} + n \times \text{period}$ $\pi/4$ X $x = \frac{\pi}{4} + n\pi$, where $n \in \mathbb{Z}$ 牧 Edit Action Interactive 🔅 ╚╪╔┝╞╠╬┚╔╬╲╸┶┶┼┥╸ solve(tan(x)=1,x) $x=\pi \cdot constn(1) + \frac{\pi}{4}$ 2.1 3.1 3.2 4.1 RAD AUTO REAL solve(tan(x)=1,x) $\chi = n \mathbf{1} \cdot \pi + \frac{\pi}{2}$ 4 mth abc cat 2D 🗵 🛨 πθ**ί**∞<>, **> χyzt** hyp 8 ο. sin sin-1 4 5 6 cos cos-1 1 2 з tan tan-1 0 E ans CALC OPTN VAR ţ EXE 1/99 Alg Standard Real Rad 💷

Question 7

$$g(x) = -2\cos\left(\frac{x}{3} - 2\right) + 1$$

Period =
$$\frac{2\pi}{\frac{1}{3}} = 6\pi$$

Amplitude = $\left|-2\right| = 2$

Range =
$$[-2+1, 2+1] = [-1, 3]$$

Question 8

 $\left| \frac{5}{x} + 1 \right| \ge 3$ $x \in \left[-\frac{5}{4}, \frac{5}{2} \right] \setminus \{0\}.$ Which is equivalent to $\left\{ x : -\frac{5}{4} \le x < 0 \right\} \cup \left\{ x : 0 < x \le \frac{5}{2} \right\}$

Answer E

Answer B

Answer A

Alternatively, a graphical approach may be used.

Find the points of intersection of y = g(x) and y = 3

Question 9

Answer A

A system of linear equations will **not** have a unique solution when the **determinant** of the coefficient matrix is equal to zero.

Solve $\begin{vmatrix} 2 & p+5 \\ p & 3 \end{vmatrix} = 0$ for p.

p = -6 or p = 1

Both of these values of *p* will give no solution.

Note that it is impossible for the equations to have infinitely many solutions because p = -6 or p = 1 does not give rise to identical equations.

 $y = -e^{-(x+1)} + 1$ meets the criteria. It is most like graph **B**.

Question 11

A dilation of scale factor 2 from the *y*-axis:

A reflection in the *x*-axis:

Translation 6 units right:

Translation 1 unit up:

Answer B

Question 12 $z = \frac{x - \mu}{\sigma}$ $= \frac{55 - 45}{8}$ = 1.25 $\Pr(X > 55) = \Pr(Z > 1.25)$ $= 1 - \Pr(Z < 1.25)$

Question 13

 $X \sim Bi(5, 0.7)$ Pr($X \ge 3$) = 0.8369

binomCdf(5,0.7,3,5)	0.83692
	1/99

Question 14

3r + 0.2 + .35 + 0.3 = 1 r = 0.05 $E(X) = 0 + (0.2 \times 1) + (.35 \times 2) + (0.3 \times 3) + (0.1 \times 4)$ E(X) = 2.2

Question 15

Solve for k, $\int_{-1}^{k} \left(\frac{t+1}{8}\right) dt = 1$ k = 3 (reject k = -5) **5.2** 6.1 7.1 8.1 RAD AUTO REAL solve $\left(\int_{-1}^{k} \left(\frac{t+1}{8}\right) dt = 1, k\right)$ k = -5 or k = 3k = -5 or k = 3

Answer D

Answer E

Answer **B**

Answer A

If T is a 2×2 matrix, S_0 must be a 2×1 matrix. The columns in T must add to one

$$T = \begin{bmatrix} 0.3 & 0.9 \\ 0.7 & 0.1 \end{bmatrix}, \quad S_0 = \begin{bmatrix} 15 \\ 30 \end{bmatrix}$$

1

Question 17

$$f(x) = A(x-B)^{\overline{3}} + C$$

The graph has a vertical tangent at x = 3, passing through the point (3, 1).

Hence B = 3 and C = 1.

$$f(x) = A(x-3)^{\frac{1}{3}} + 1$$

The y-intercept is negative as f(0) < 0.

A possible value for *A* is 1.

$$f(x) = (x-3)^{\frac{1}{3}} + 1$$

Question 18

Hence the graph of
$$f$$
 has a stationary point of inflection at $(1, 0)$

 $f(x) = x^{4} - x^{3} - 3x^{2} + 5x - 2 = (x - 1)^{3}(x + 2)$

and a local minimum.

Answer B

Answer C

Page 8

$$\sqrt{x^2} = |x|$$

$$f(g(x)) = x^4 + |x|$$

There is a cusp at x = 0.

$$\frac{d}{dx}(x^4 + |x|) = \begin{cases} 4x^3 + 1 \text{ for } x > 0\\ 4x^3 - 1 \text{ for } x < 0 \end{cases}$$

Answer D

,

Answer D

$$\frac{d}{dx} (\log_e(\sin(2x))) \text{ is undefined when } \sin(2x) \le 0$$

$$\frac{(2k-1)\pi}{2} \le x \le \pi k, k \in \mathbb{Z}$$

Question 21

Answer E

For A, B and C, y > 0 for all x and as x increases, y increases.

The rectangles will always be under the curve.

For D and E y < 0 for all *x*.

For D as x increases y decreases and the area of the rectangles will under estimate the actual area.

For E as x increases y increases and the area of the rectangles will over estimate the actual area.

Solve $\sin\left(\frac{x}{2}\right) = \cos(x)$ for $0 \le x \le 4\pi$ $x = \frac{\pi}{3}$ or $x = \frac{5\pi}{3}$ or $x = 3\pi$

The curve of f is above the curve of g for the first area and below for the second area.

Area =
$$\int_{\frac{\pi}{3}}^{\frac{5\pi}{3}} (f(x) - g(x)) dx + \int_{\frac{5\pi}{3}}^{3\pi} (g(x) - f(x)) dx$$

Section 2 - Extended Answer

Question 1

a. Shape

Open circle (0, 0) and closed circle $(4, 64\pi)$

b.
$$V = \frac{1}{3}\pi r^2 h = \pi r^3$$

 $h = 3r = 3 \times 4 = 12 \text{ cm}$ 1A

$$h = 3r = 3 \times 4 = 12$$
 cm

c. i.
$$V = \pi r^3$$

$$\frac{dV}{dr} = 3\pi r^2 = 3\pi \times 2^2 = 12\pi \text{ cm}^3/\text{cm}$$
 1A

$$V(2) = 8\pi$$

$$V(r) \approx V(2) + (r-2)V'(2)$$

$$= 8\pi + (r-2)12\pi$$

$$V(r) \approx 12\pi r - 16\pi$$
 as required 1M

ii.
$$V(2.1) = 12\pi \times 2.1 - 16\pi = \frac{46\pi}{5} \text{ cm}^3$$
 1A

iii. Underestimate

The actual volume is being approximated by the tangent to the curve at x = 2. The tangent line is below the graph of V at r = 2.1.

1A

1A 1A

d. i. Area
$$\approx f(1) + f(2) + f(3) + f(4)$$

 $=100\pi \text{ cm}^2$

ii.
$$100\pi - \int_{0}^{4} V(r)dr$$
 1A

 $=36\pi$ cm²

$$\frac{100\pi}{4} - \frac{1}{4} \int_{0}^{4} V(r) dr$$

 $=9\pi$ cm

$$\frac{36\pi}{4} = 9\pi$$

© Mathematical Association of Victoria

1A

1A

a. i.
Period of 1 cycle = 11 years
Number of cycles =
$$\frac{2008 - 1755}{11} = 23$$
 1A

$$N \in \begin{bmatrix} 10, 110 \end{bmatrix}$$
 1A

Period =
$$\frac{2\pi}{n}$$

 $n = \frac{2\pi}{11}$, as required 1M
c.

- The amplitude is 50, therefore a = 50. **1M**
- The cosine graph has been translated 60 units up (average value for a complete cycle is 60), therefore b = 60.
 1M

$$N(t) = 60 - 50 \cos\left(\frac{2\pi t}{11}\right)$$

$$N(2) = 39$$
1A

e.

Using CAS, a graphical or algebraic method may be used to find where N(t) = 80.

$$N(t) = 80$$
 for $t \approx 3.47$ or $t \approx 7.35$
time = $(7.52956 - 3.47044) \times 12$

Edit Action Interactive

= 49 months

	define f(x)=60-50cos(11 done
1.1 1.2 RAD AUTO REAL	39.22924935
solve(≠1(x)=80,x) 0≤x≤11	{x=3.470444342,x=7.5295
x=3.47044 or x=7.52956	
© Find the time between the values, in months	
(7.52956-3.47044)-12 48.7094	
1/3	Blg Standard Beal Bad 💷

f. Solve for k, $N_1(5) = 89$ k = 0.10, as required.

g.

Using CAS, a graphical or algebraic method may be used. Solve for t, $N(t) = N_1(t)$,

$$t \in \{0, 2.75, 8.75\}$$

$$N(0) = 10$$

$$N(2.75) = N(8.75) = 60$$

Points of intersection are

(0.0, 10.0), (2.8, 60.0), (8.8, 0.0)

Note that the points of intersection are independent of the value of k, because k does not alter the period.

1M

1M

Correct shape	1A
Intersection points correctly placed and labelled	1A
Turning points and intersection points correctly labelled	1A
Endpoints with closed circles and correctly labelled	1A

a. ii.

$$\Pr(X > 10 | X < 13) = \frac{\Pr(10 < X < 13)}{\Pr(X < 13)}$$
1M

$$\Pr(X > 10 \mid X < 13) = 0.563$$

1.3 1.4 1.5 2.1 RAD AU	JTO REAL
©a.i. Heal within 13 days	
normCdf(-∞,13,11,2.5)	0.788145
©a.ii. Conditional probability	
normCdf(10,13,11,2.5)	0.562798
normCdf(-∞,13,11,2.5)	
0	
	1/4

b. Let *Y* be the number of patients with incision **not** healed at the time of discharge. $Y \sim Bi(5, 1-0.788145...)$ **1M** $\Pr(Y \ge 1) = 0.696$ **1A** 1.4 1.5 2.1 2.2 RAD AUTO REAL © b. At least 1 of 5 not healed binomCdf(5,1-normCdf(-∞,13,11,2.5),1,5) 0.695891 2/99 c. Area =0.95 **→** Z 0 Χ 9 12 $\Pr(Z < z) = 0.95$ **1M** $\Pr(Z < z) = 1.64485$ $z = \frac{x - \mu}{\sigma}$ $1.64485 = \frac{12-9}{\sigma}$ **1M** $\sigma = \frac{12 - 9}{1.64485}$ $\sigma = 1.82$ days **1A** 1.5 2.1 2.2 2.3 RAD AUTO REAL © c. Use inverse standard normal to find z. invNorm(0.95,0,1) 1.64485 $\frac{x-\mu}{\sigma}$ to find σ . © Use z= solve inv Norm (0.95,0, σ=1.82387

Alternative solutions: there are several other methods of solving this problem using the CAS device. A graphical approach is shown below.

Let *W* be the healing time using this technology

1/4

$W \sim N(9, x^2)$

Solve (graphically) for *x*, $\Pr(W < 12) = 0.95$

$$x = 1.82$$

The standard deviation is 1.82 days 2.1 2.2 2.3 3.1 RAD AUTO REAL 1.5 1 9 $f1(x) = \operatorname{norm} Cdf(-\infty, 12, 9, x)$ graph f1 (1.82,0.95)

d.

33

0.2

0.5

Let *m* be the median time in hospital Solve for *m*,

$$\int_{8}^{m} f(t) dt = 0.5, \text{ or alternatively, } \int_{m}^{12} f(t) dt = 0.5$$
1M

t = 10.46 days

(Reject solutions outside the domain)

Alternatively, avoid redundant solutions by defining (storing) the function with its domain.

1A

2M

e.

••		
	Canteen	Tracebook
	Today	Today
Canteen		
Tomorrow	0.75	0.4
Tracebook		
Tomorrow	0.25	0.6
$\Pr(C,T) + \Pr(C,T)$	T(T,C) = (0.75)	$\times 0.25) + (0.25)$
		23
$\Pr(C,T) + \Pr(C,T)$	(T,C) = 0.287	$5 = \frac{25}{20}$

$$.2875 = \frac{23}{80}$$
 1A

A tree diagram could be used to clarify the situation. Tuesday Wednesday

1M

f.

For a Markov chain with transition matrix T and initial state matrix S_0 , the n^{th} state is given by $S_n = T^n \times S_0$.

$$T = \begin{bmatrix} 0.75 & 0.4 \\ 0.25 & 0.6 \end{bmatrix} \text{ and } S_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ or alternatively, } T = \begin{bmatrix} 0.6 & 0.25 \\ 0.4 & 0.75 \end{bmatrix} \text{ and } S_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 1M

$$S_{4} = T^{4} \times S_{0}$$

$$S_{4} = \begin{bmatrix} 0.62\\ 0.38 \end{bmatrix} \leftarrow canteen \\ \leftarrow Tracebook$$
1M

The probability of canteen on Friday is 0.62.

1A

Note that the solution may also be obtained from T^4 , without using S_0 .

Asymptote
$$\frac{dP}{dt} = 2$$
 0.5A

Shape

Round down

ii. As
$$t \to \infty, \frac{dP}{dt} \to 2$$

2000 insects per year

b. i.
$$P = \int (3^{1-t} + 2) dt$$

$$=2t - \frac{3 \times 3^{-t}}{\log_e(3)} + c \tag{1A}$$

Solve
$$200 = 2t - \frac{3 \times 3^{-t}}{\log_e(3)} + c$$
 when $t = 0$

$$P = 2t - \frac{3 \times 3^{-t}}{\log_e(3)} + 200 + \frac{3}{\log_e(3)}$$
 1A

1A

MAV 2010 MM CAS TRIAL EXAM 2 - SOLUTIONS

ii. $P(1) \approx 204\,000$ insects

c. i. Solve
$$\frac{dP}{dt} = t$$
 for t

t = 2.25 years

ii. Let
$$y = \frac{dP}{dt}$$

Inverse: swap *t* and *y*

Solve
$$t = 3^{1-y} + 2$$
 for y

$$\frac{dP}{dt} = \frac{\log_e \left(\frac{3}{t-2}\right)}{\log_e(3)} = 1 - \frac{\log_e (t-2)}{\log_3(3)}$$
Accept equivalent forms
1A

1A

MAV 2010 MM CAS TRIAL EXAM 2 - SOLUTIONS

iii.
$$t = 5$$

iv.
$$P = \int \left(\frac{\log_e \left(\frac{3}{t-2} \right)}{\log_e (3)} \right) dt$$

$$= \frac{(t-2)\log_e \left(\frac{1}{t-2} \right) + (\log_e (3) + 1)t - 2}{\log_e (3)} + c$$
Solve $P = 2t - \frac{3 \times 3^{-t}}{\log_e (3)} + 200 + \frac{3}{\log_e (3)}$ for $t = 2.2525...$

Solve 207.006... =
$$\frac{(t-2)\log_e\left(\frac{1}{t-2}\right) + (\log_e(3)+1)t - 2}{\log_e(3)} + c \text{ for } c \text{ when } t = 2.2525...}$$
 1M

$$c = 204.207 \dots$$

P = 207.006 ...

$$P(5) = 208\,938$$
 insects

1A

1M

🛛 🕊 Edit Action Interactive	X
▝▙▋▞▞▶▕▓▓▞▝▎▞ᡫ▞▝	≽
$\int_{\frac{1}{1}}^{\frac{1}{1}} \frac{\ln\left(\frac{3}{t-2}\right)}{\ln(3)} dt$ $\frac{-(t \cdot \ln(t-2) - 2 \cdot \ln(t-2) - t \cdot 1)}{\ln(3)}$	
Alg 👘 Standard Real Rad 💷	

🛛 😻 Edit Action Interactive								X	
▝▙▙▌▞▖▌▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓									≽
define $f(t) = 2t - \frac{3 \times 3^{-t}}{\ln(3)} + \frac{1}{\ln(3)}$									Î
f(2.25256565961) 207.0059538 p									
mth labc (cat 20) 🖾 🗗 🗔								U T	
a	D	C		e		क	1,))	•
1	9	ħ	i	j	1867	To T	÷	izi	E,
	\sim	_			2861 F	10	191		
k	1	m	n	0	4	5	6	×	- ÷
k P] 9	m r	<u>п</u> 5	o t	4	0 5 2	9 6 3	×	- ÷ -
k P 4	1 9	m r u x	<u>п</u> 5 V У	o t W	4	。 5 2	9 6 3 E	× +	- ÷ - 15
	7 9 16		<u>ה</u> ק גר	0 t w z ା	4 1 0 PTN	° 5 2 •	9 6 3 E	× + E	- - 15 XE

d. The population will start to decrease from January 1st 2014 until they become extinct. Hence the scientists are predicting climate change will not favour the insects. (anything suitable)
1A