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Question 1 
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       M1 

i. for a unique solution  0 \{ 4,3}k RΔ ≠ ⇒ ∈ −     A1 
 
ii. ( )if 3 1 2 3 5k x y= − + =  

 ( )2 4 6 10x y− = −  
 

These equations represent the same line and are consistent,   
so for infinitely many solutions  3k =       A1 
 
iii. ( )if 4 1 2 4 2k x y= − − − = −  

 ( )2 3 6 10x y− − = −  
 

These lines are parallel, they have the same gradient, but different y-intercepts,  
the equations are inconsistent, so for no solution  4k = −     A1 
 
Question 2 
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       A1 

 
Question 3 
 

a. ( )sin 2y x x=    using the product rule 

 ( ) ( )sin 2 2 cos 2dy x x x
dx

= +        A1 
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b. Since ( )( ) ( ) ( )sin 2 sin 2 2 cos 2d x x x x x
dx

= +    it follows that 
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2 cos 2 sin 2 sin 2

12 cos 2 sin 2 cos 2
2

x x dx x x x dx

x x dx x x x

= −

= +⌠⎮
⌡

∫ ∫
     M1 

 ( ) ( ) ( )1 1cos 2 sin 2 cos 2
2 4

x x dx x x x c= + +⌠⎮
⌡

    A1  

 

c.i. ( )
0

2cos 2 1
b

x dx =∫  
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      M1 

 

 ii. ( ) ( )
4

0

2 cos 2E X x x dx

π

= ∫  

( ) ( ) ( )
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0

1sin 2 cos 2
2

E X x x x
π

⎡ ⎤= +⎢ ⎥⎣ ⎦
      M1 

( ) ( ) ( )1 1sin cos 0 sin 0 cos 0
4 2 2 2 2

E X π π π⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − × +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

( ) 1 2
4 2 4

E X π π −
= − =        A1 

iii. ( )
0
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      A1 
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12

m π
=          A1 
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Question 4 
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       M1 

14b = −           A1 
( ) 4 212 25 12g x x x= + +         A1 

 
Question 5 
 

( )
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         A1 
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        M1 

9 metress =           A1 
 
Question 6 
 
a. ( ) ( ) ( ) ( )3 2 2 2f x x k x x x k x x k x k= − = − = + −  

 the graph crosses the x-axis at  ( ) ( ),0 and ,0k k−  

 ( ) 2 23 0f x x k′ = − =  for stationary points      

 
2

2 3
2 33
k k kx x= ⇒ = ± = ±       M1 
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x

y

 
  
 

 ( ) 3 30 , ,
3 3

k kf x
⎛ ⎤ ⎡ ⎞

′ ≥ ⇒ −∞ − ∞⎜ ⎟⎥ ⎢⎜ ⎟
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∪      A1 

b. The area ( )3 2

0

k

A x k x dx= −∫  is below the x-axis so is negative 

 ( )3 2

0

64
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A x k x dx= − − =∫        M1  
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 4k =           A1 
 
Question 7 
 

a. ( ) ( ) ( ) ( )tan cosf gα α α α= ⇒ =  
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sin cos 1 sin
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      M1 

 ( ) ( )2sin sin 1 0 solving using quadratic formulaα α+ − =   M1 

 
( ) ( )
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1 5sin but sin 0 since 0,
2 2
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   M1 
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b. ( ) ( ) ( ) ( )2

1 sin
cos

f x g x x
x

′ ′= = −  

 ( ) ( ) ( ) ( )2

1 sin
cos

f gα α α
α

′ ′= = −     A1  
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   M1 

 Since the products of the gradients is 1− ,      A1 
 the functions intersect at right angles. 
 
 
Question 8   
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      M1 

( ) ( )3 23 420 1 15 1 0p p p p− − − =        A1 
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Question 9 
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4 dx
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b. i. [ ] ( ) 4: 4, 1f R f x
x

−
− − → =

−
   

  both domain and rule are required     A1 

 ii. Total area 8 2 4 8× + ×     area of rectangle and symmetry from a. 

  248 units=         A1  
 

Question 10 

( )

32cos 4
3
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2 3
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       M1 
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x x
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π π
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3 , 0 , 0 , 2a b c d
π

= = = = −        A1  

3 4h k
π

= − =          A1 
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