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SECTION 1

Question 1 A

Using CAS, define  and .

 is found directly on CAS or alternatively:

There is no need to simplify this. Let  to directly give:

Question 2 A

This is the first principle’s definition of , where .

Question 3 B

This means f undergoes a reflection in the y-axis: ,

followed by a dilation away from the y-axis of scale factor : ,

followed by a translation of  to the right:

, i.e. ; .

Finally, it is translated 2 units vertically up: .

Question 4 D

The graph of  clearly shows an amplitude of 5, a range of  and the 

period is , so A, B and C are correct.

Consider alternative D. If , then a vertical translation of 1 unit up means 

. If we now reflect in the x-axis, we get 

 which is incorrect.

Alternative E shows  shifted  units right giving 

. Translating this 1 unit up results in .

f x( ) 4 2x– x2–= g x( ) x 7–=

f g 5( )( )

f g x( )( ) f x 7–( ) 4 2 x 7–– x 7–( )2–= =

x 5=

f g 5( )( ) 4 2 5 7–– 5 7–( )2–=

4 4– 4–=

4–=

loge e h+( ) 1–

h
-----------------------------------

h 0→
lim

loge e h+( ) loge e( )–

h
--------------------------------------------------

h 0→
lim=

f ′ e( ) f x( ) loge x( )=

g x( ) f 1 3x–( ) 2+=

f 3 x
1
3
--- – 

 – 
  2+=

f x( ) f x–( )  3 11–,( ) 3– 11–,( )→;→

1
3
--- f x–( ) f 3x–( )  3 11–,–( ) 1 11–,–( )→;→

1
3
---

f 3x–( ) f 3 x
1
3
--- – 

 – 
 → f 1 3x–( ) 1 11–,–( ) 2–

3
------ 11–, 
 →

f 1 3x–( ) f 1 3x–( ) 2  
2–

3
------ 11–, 
  2–

3
------ 9–, 
 →;+→

f x( ) 1 5 2x π–( )cos–= 4 6,–[ ]

π

g x( ) 5 2x π–( )cos=

g x( ) 5 2x π–( ) 1+cos=

f x( ) 5 2x π–( ) 1+cos( )– 5 2x π–( ) 1–cos–= =

h x( ) 5 2x( )cos–=
π
2
---

h x( ) 5 2 x π
2
---– 

 
 
 cos– 5 2x π–( )cos–= = f x( ) 1 5 2x π–( )cos–=



VCE Mathematical Methods (CAS) Units 3 & 4 Trial Examination 2 Suggested Solutions

Copyright © 2011 Neap TEVMMU34EX2_SS_2011.FM 3

Question 5 B

From the matrix equation 

i.e.  and .

Therefore  and .

So  becomes 

Question 6 B

During the first second, the position of the body changes (in the negative direction) by an amount equal to 

the area of the triangle, i.e. .

Notice this means the body moves to the left by 2 m during this time.

From , the body moves in the opposite direction (right) by . So the net result in the 

first 2 seconds is a move of 0.5 units to the left.

So . Only alternatives A and B satisfy this requirement.

From , the body moves further right by .

After this, the body moves back to the left once again. Therefore . Combining these results gives 

.

Question 7 D

There are many varied approaches which could be used, ranging from statistical regression to trial and error.

One quick approach is to graph the 3 exponential functions in an appropriate window using 0 to 16 for  
and 0 to 60 for .

 follows the data more closely over the domain than the others. Clearly the data is not 
negative so alternative E is rejected. Alternative C is quadratic. A quick look at its graph also shows it 
matches the data only for very small values of n.

 x ′
 y ′

2 0

0 4

 x 

 y 

1–

2
– 2x 1+

4y 2–
= =

x ′ 2x 1+= y ′ 4y 2–=

x x ′ 1–
2

--------------= y y ′ 2+
4

--------------=

y x3= y ′ 2+
4

--------------
x ′ 1–

2
-------------- 
 

3

=

y 4
x 1–

2
----------- 
 

3

2 y⇒–
1
2
--- x 1–( )3 2–= =

1
2
--- 1 4×× 2=

1 t 2< < 1
2
--- 1 3×× 1.5=

x 2( ) x 0( )<

2 t 4< < 1
2
--- 2 1+( ) 3× 4.5=

x 6( ) x 4( )<

x 2( ) x 0( ) x 6( ) x 4( )< < <

x n( )
y N( )

N 60 0.96( )n=
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Question 8 E

Given , the remainder when divided by  is .

Now 

As k is a positive integer,  is odd and  is even.

Thus 

Question 9 A

An inverse exists if the function is one-to-one.

It is tempting to think of cubics as many-to-one functions but both f and g are one-to-one.

A sketch of their graphs on CAS quickly shows this is the case. Alternatively, the derivatives of f and g are 
shown algebraically:

Clearly each of these derivatives is always positive. Thus f and g are increasing functions and hence 
one-to-one.

The graph of  is symmetrical about the y-axis and hence the function is not one-to-one.

Question 10 C

A dilation from the x-axis by a factor of  means  and .

A dilation from the y-axis by a factor of 3 means  so we have new equations  

and .

These graphs meet when .

 and  are the first two positive solutions with  and .

Thus the graphs intersect at  after the dilations have occurred.

Question 11 D

 Or using CAS: solve

p x( ) 5x2k 1+ 10x2k– 3x2k 1– 5+ += x 1+ p 1–( )

p 1–( ) 5 1–( )2k 1+ 10 1–( )2k– 3 1–( )2k 1– 5+ +=

2k 1± 2k

p 1–( ) 5 1–( ) 10 1( )– 3 1–( ) 5+ +=

5– 10– 3– 5+ 13–= =

f ′ x( ) x2 x 1+ + x
1
2
--- + 

 
2 3

4
---+= =

g ′ x( ) 3x2 2x 1+ + x 1+( )2 2x2+= =

h x( ) x

2
3
---–

=

1
2
--- 3x( ) 1

2
--- 3x( )cos→cos 3x( )sin

1
2
--- 3x( )sin→

x
1
3
---x→ y1

1
2
--- x( )cos=

y2
1
2
--- x( )sin=

1
2
--- x( )sin

1
2
--- x( ) x( )tan⇒cos 1= =

x π
4
---= x 5π

4
-------= y  

π
4
---  

 cos 2
2

-------= =
5π
4

------- 
 cos 2

2
-------–=

π
4
--- 2

4
-------, 

   and 
5π
4

------- 2
4

-------–, 
 

1
3
---x2 xd

p

3

∫ 1=

1
9
---x

3

p

3

1=

33 p3– 9=

p3 18=

p 183=

1
3
---x2 xd

p

3

∫ 1= p,
 
 
 
 



VCE Mathematical Methods (CAS) Units 3 & 4 Trial Examination 2 Suggested Solutions

Copyright © 2011 Neap TEVMMU34EX2_SS_2011.FM 5

Question 12 C

Question 13 B

is equivalent to:

X number of goals scored in 30 attempts:

X Bi n 30 p, 0.7= =( )∼

µ 30 0.7× 21= =

σ 30 0.7 0.3×× 2.51= =

Pr µ σ– X µ σ+< <( ) Pr 21 2.57– X 21 2.51+< <( )=

Pr 18.49 X 23.51< <( )=

Pr 19 X 23≤ ≤( )=

0.6812=

Pr 47.5 X 57.5< <( ) Pr
47.5 50–

5
---------------------- Z

57.5 50–
5

----------------------< < 
 =

Pr 0.5– Z 1.5< <( )=

0.5 1 1.5–0.5–1–1.5
z

0.5 1 1.5–0.5–1–1.5
z
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Question 14 A

Question 15 D

As , the median is halfway between 6 and the next value of X; here 8.

x 1 2 4 6 8 10

0.1 0.2 0.3 0.5 0.8 1

Pr at least 1 boy and 1 girl( ) 1 Pr BBB( )– Pr GGG( )–=

1
4

12
------ 3

11
------ 2

10
------⋅ ⋅ 

 –
8

12
------ 7

11
------ 6

10
------⋅ ⋅ 

 –=

1 1
55
------– 14

55
------–=

1 3
11
------–=

8
11
------=

ΣPr X x=( ) 1=

p p p 2p 3p 2p+ + + + + 1=

10p 1=

p 0.1=

Pr X x≤( )

Pr X 6≤( ) 0.5=

median∴ 6 8+
2

------------ 7= =
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Question 16 A

For:

,  i.e. graph of  is above the x-axis.

 has a turning point, .

 i.e. graph of  is below the x-axis.

 does not exist.

 i.e. graph of  is above the x-axis.

 has a turning point .

 i.e. graph of  is below x-axis.

As .

2 4 6–2–4

y

x
O

f x( )
f ′ x( )

x 1–< f ′ x( ) 0> f ′ x( )

x 1, f x( )–= f ′ x( )∴ 0=

1 x 0, f ′ x( ) 0<< <– f ′ x( )

x 0, f ′ x( )=

0 x 1, f ′ x( ) 0>< < f ′ x( )

x 1, f x( )= f ′ x( )∴ 0=

x 1, f ′ x( ) 0<> f ′ x( )

x ∞, f ′ x( ) 0→→



VCE Mathematical Methods (CAS) Units 3 & 4 Trial Examination 2 Suggested Solutions

Copyright © 2011 Neap TEVMMU34EX2_SS_2011.FM 8

Question 17 E

 has graph:

Clearly at  there are cusps, ∴  and  do not exist.

Alternatively using CAS:

 ∴ the limit does not exist and  does not exist.

Note: sign(0) is undefined.

Question 18 C

Using a CAS calculator:

normalLine  or gives –2, which we interpret to mean .

OR

A graph of  is:

 is undefined.

∴ gradient of normal at  is 0.

∴ equation of normal at .

f x( ) 9 x2–=

–3 3

y

x
O

a

x 3±= f ′ 3–( ) f ′ 3( )

f ′ x( ) 2xsign x2 9–( )=

f ′ x( )
x 3

–→
lim 6–=

f ′ x( )
x 3

+→
lim 6= f ′ 3( )

x

3
5
---

2– x 0, ,
 
 
 

normal x

3
5
---

2 x 0, ,–
 
 
 

y 2–=

y f x( )=

y

x

–2

O

d
dx
------ f x( ) at x 0=

x 0=

0 2–,( ) is y 2–=
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Question 19 E

Let  be the first x-intercept,  the second x-intercept, so therefore  and .

∴ On the graph of  there will stationary points at  and .

To the left of , the gradient is negative. To the right of , the gradient is negative. 
∴ At , there is a point of inflexion.

To the left of , the gradient is negative. To the right of , the gradient is positive. 
∴ At , there is a local minimum.

E is the only graph which has these two features.

Question 20 C

Given 

 as  is a dilation of  parallel to the x-axis.

y

x
x1 x2

O

x1 x2 f ′ x1( ) 0= f ′ x2( ) 0=

y f x( )= x1 x2

x1 x1

x1

x2 x2

x2

f x( ) xd

0

a

∫ 2–=

f 2x( ) xd

0

a
2
---

∫∴ 1–= f 2x( ) 1
2
---

Also, 2f 2x( ) xd

0

a
2
---

∫ 2 f 2x( ) xd

0

a
2
---

∫=

2 1–×=

2–=
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Question 21 D

As A and B are independent, so therefore are .

OR

 this gives the following probability table:

Question 22 E

A graph of  shows that as , the area required is below the x-axis.

Using a CAS calculator:

Therefore area required is .

A

B pq q

p 1

A ′ and B ′

Pr A ′ B ′( )∴ Pr A ′( ) 1 p–= =

Pr A B∩( ) pq=

∩ A ′

q pq–

B ′ p pq– 1 pq p– q–+ 1 q–

1 p–

Pr A B ′( ) Pr A ′ B ′∩( )
Pr B ′( )

------------------------------ 1 pq p– q–+
1 q–

---------------------------------= =

1 p–( ) 1 q–( )
1 q–( )

----------------------------------=

1 p–=

y loge  
1
x
---  

 = a 1>

a loge  
1
a
---  

  1+ 
  1– 

 – 1 a loge  
1
a
---  

  1+ 
 –=

1 a– aloge a( )+=
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SECTION 2

Question 1

a. For f to be defined, . M1

Thus 

Hence the domain of f is . A1

b.

x-intercepts at A1

Asymptotes with equations  and A1

Graph shape and location A1

c. Given that . M1 A1

d. Given that , the inverse is given by:

       M1

As , . A1

Domain = , Range = . A1

x 1–( )2 m–( ) 0 x 1–( )2 m>⇒>

x 1 m or x– 1 m>–<–

x 1 m or x 1 m+>–<⇒

∞– 1 m–,( ) 1 m+ ∞,( )∪

x  

y

O

2

4

6

8

–2

–4

–6

–8

2 4 6–2–4–6

x = 3x = –1

1 5– 0,( ) 1 5+ 0,( )

1 5+ 0,( ) 1 5– 0,( ),

x 1–= x 3=

x 2–< 1 m–, 2 m⇒– 9= =

g ∞– 2–,( ) R g x( ),→: loge x 1–( )2 m–( )=

x loge y 1–( )2 m–( )=

ex y 1–( )2 m–( )=

y 1– ex m+±=

y 1 ex m+±=

dom g( ) ran g 1–( ) ∞– 2–,( )= = g 1– x( ) 1 ex m+–=

loge 9 m–( ) ∞,( ) ∞– 2–,( )
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e. i. A1

A turning point occurs if .

In addition,  for the function to be continuous and have a turning point.

Hence  and . A1

ii. Starting with , we get:

 (reflection in the x-axis)

which becomes:  (dilation from the y-axis, factor ) M1

which becomes:  (dilation from the x-axis, factor 2) A1

iii. If we translate  A units up, we get:

Solve on CAS:  (or equivalent) M1

Gives , so , correct to the nearest integer A1

f x( ) loge x 1–( )2 m–( ) f ′ x( )⇒ 2 x 1–( )
x 1–( )2 m–( )

---------------------------------= =

f ′ x( ) 0 x⇒ 1= =

x 1–( )2 m 0>–

m 0< x 1=

f x( ) loge x 1–( )2 1+( )=

y loge x 1–( )2 1+( )–=

y loge 2x 1–( )2 1+( )–=
1
2
---

y 2loge 2x 1–( )2 1+( )–=

y 2loge 2x 1–( )2 1+( )–=

y 2loge 2x 1–( )2 1+( )– A+=

x  

y

O

2

4

6

8

–2

–4

–6

–8

2 4 6–2–4–6

2loge 2x 1–( )2 1+( ) A+–( ) xd

0

4

∫ 23.5=

A 10.0015= A 10=
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Question 2

a. A1

b.

i.e.  into 

A1

M1

To achieve this, , not 16, to the nearest gram. A1

c. A1

d. A1

e.

f.

g. For a steady state, choose a large value of n, e.g. n = 50.

A1

Pr 130 X 170< <( ) 0.5763 57.63%= =

Pr 130 X 170< <( ) 0.8≥

170130
z

170130
z

Pr X 170<( )∴ 0.9≥

Pr Z z<( ) 0.9≥

Z1 invnorm 0.9( )=

170 150–
σ

------------------------ 1.28≥

σ∴ 20
1.28
----------≤ 15.625=

σ 15=

0.6( )5 0.07776=

 5 

 3  
  0.6( )3 0.4( )2 0.3456=

Pr(AB or BA) 0.6 0.2× 0.4 0.6×+=

0.36=

M1

A1

p 0.8=

T A\A A\B

B\A B\B

0.8 0.6

0.2 0.4
= =

Pr X4( )∴ T3 0

1

0.744

0.256
= =

0.256∴

M1

A1

T50 0.75 0.75

0.25 0.25
=

0.75 or 75%∴
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h. or nspire,  M1

A1

Using CAS: solving 

A1

Question 3

a. The maximum height is given by the maximum value of:

A1

b. i. Using part a. and the graph, . The width of the hump is 0.5, so . A2

ii. Using  and , we have

M1

As A1

iii. As  describes this hump, CAS gives M1

This means the magnitude of the maximum gradient is . A1

Thus the maximum angle of the hump is , which means the speed hump is 

not of the described design. A1

iv.  can be re-expressed on CAS as  as 

the value of d remains the same, i.e. .

This gives . M1

Thus the maximum value for the gradient is .

So M1

Our original value for b was , hence .

So a dilation of factor  from the x-axis is required. A1

p 1.4 p–( )
1 p–( ) p 0.4–( )

3
1

0
∴ 0.8

0.2
= solve p 1.4 p–( )

1 p–( ) p 0.4–( )

3
1

0

0.8

0.2
p,=

 
 
 

4p3 7.6p2– 5.16p 0.56–+

4 p 1–( ) p2 0.9p– 0.39+( )–

0.8

0.2
=

4p3 7.6p2– 5.16p 0.56–+ 0.8=

p 0.8591=

f x( ) b 1
2
---

1
2
--- π 4x d–( )

2d
----------------------- 
 sin+=

f x( )max b 1
2
--- 1

2
---+ b= =

b 0.1= d 0.5=

b 0.1= d 0.5=

f x( ) 0.1 1
2
---

1
2
--- π 4x 0.5–( )

2 0.5×
---------------------------- 
 sin+

1
20
------ 1 4πx π

2
---– 

 sin+= =

θ π
2
---– 

 sin π
2
--- θ– 
 – 

 sin π
2
--- θ– 
 sin– θ( )cos–= = =

f x( ) 1
20
------ 1 4πx π

2
---– 

 sin+
1

20
------ 1 4πx( )cos–( )= =

y
1

20
------ 1 4πx( )cos–( )= dy

dx
------

π
5
--- 4πx( )sin=

π
5
---

tan 1– π
5
--- 
  32.14°=

f x( ) b 1
2
---

1
2
--- π 4x d–( )

2d
----------------------- 
 sin+= f x( ) 1

2
---b 1 4πx( )cos–[ ]=

d 0.5=

f ′ x( ) 2πb 4πx( )sin=

2πb

2πb 15°( )tan 2 3 b⇒– 2 3–
2π

----------------= = =

1
10
------ 1

10
------k

2 3–
2π

---------------- k⇒ 5 2 3–( )
π

------------------------= =

5 2 3–( )
π

------------------------
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c. i.

One mark per graph A2

ii. Too steep at the start and end of the hump. A1

d. i. Now the area between each curve is given by:

A1

The volume difference will be given by:

A1

ii. Calculating by CAS, we get 0.011338 cubic metres. As there are 5 humps, we have 
0.057 cubic metres. A1

Question 4

a.  for stationary points. M1

 or 2 or 

At 

0.30 0.500.10 0.20 0.40

0.02

0.04

0.06

0.08

0.1

p 3
2
---=

p 1=

p 1
2
---=

A 0.1 0.5 0.5 π 4x 0.5–( )( )sin+[ ] 0.1 0.5 0.5 π 4x 0.5–( )( )sin+[ ]1.5– xd

0

0.5

∫=

V 3 0.1 0.5 0.5 π 4x 0.5–( )( )sin+[ ] 0.1 0.5 0.5 π 4x 0.5–( )( )sin+[ ]1.5– xd

0

0.5

∫=

f ′ x( ) x 3–( )2 x 2–( ) 5x 12–( )– 0= =

x∴ 3=
12
5

------

x 2 a local minimum,=

x 12
5
------= a local maximum,

x 3 a stationary point of inflexion,=

A1

A1

A1
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b. If . A1

i.e. , its nature will be a point of inflexion. A1

c.

M1

 or  or A1

d. Using CAS:

Define .

Determine M1 A1

Solve 

Answer  or b or 

e. For any point to be equidistant from  and , .

∴ from Question 4 part d., .

Solving for either m or n gives . A1

a b=

g x( ) a x–( )5=

g x( ) a x–( )2 b x–( )3=

g ′ x( ) x b–( )2 x a–( ) 5x 3a– 2b–( )– 0 for stationary point= =

x a= x b= x 3a 2b+
5

-------------------=

h x( )

h ′ x( ) a x–( )m 1– b x–( )n 1– m n+( )x mb na+( )–( )=

h ′ x( ) 0=

x a=
an bm+

m n+
--------------------

x a= x b= x∴ a b+
2

------------=

an bm+
m n+

-------------------- a b+
2

------------=

m n=


