

A non-profit organisation supporting students to achieve their best.

Units 3 and 4 Maths Methods (CAS): Exam 1

Technology Free Practice Exam Question and Answer Booklet

Duration: 15 minutes reading time, 60 minutes writing time

Structure of book:

Number of questions	Number of questions to	Number of marks
	be answered	
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers and rulers
- Students are not permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- No calculator is allowed in this examination.

Materials supplied:

• This question and answer booklet of 7 pages, including a formula sheet on the last page.

Instructions:

- You must complete all questions of the examination.
- Write all your answers in the spaces provided in this booklet.

Instructions

Answer all questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working must be shown.

Unless otherwise indicated, the diagrams in this book are not drawn to scale.

Questions

G(CI	Cottorio	
Que	stion 1	
a.	Differentiate $f(x) = x log_e(x)$.	
	2 mark	(S
b.	Hence, find $\int_{1}^{2} \log_{e}(x) dx$.	
	2 mark	(S
	Total: 4 mark	S
<u>م</u>	ation 0	
	estion 2	
4 ra	ndom variable X follows a binomial distribution with mean 5 and variance 4. Find n and p .	
	3 mark	(S

Question 3	
Find and classify the stationary points of $f(x) = x^4 - x^2 $.	
	4 marks

Que	estion 4	
a.	Solve $log_e(2) = log_2(x)$ for x .	
		2 marks
		ZIIIdIKS
b.	Solve $25^x - 5^{x+1} = -6$ for x .	
		3 marks
		Total: 5 marks
	estion 5	
Cor	nsider the simultaneous equations containing the real constant k : $(k-1)x + y = 3$	
	6x + ky = 3k	
Cip.		
rin(d the values of k for which there are infinitely many solutions.	
		4 marks

a.	Solve $2 \sin (x + \frac{\pi}{2}) + 1 = 0$ for x over $x \in [0, 2\pi]$.

3 marks

b. Hence or otherwise, state the solutions to the equation $4\cos\left(x+\frac{\pi}{3}\right)+5=3$ over 2	<i>c</i> ∈ [0,2 <i>π</i>]
---	----------------------------

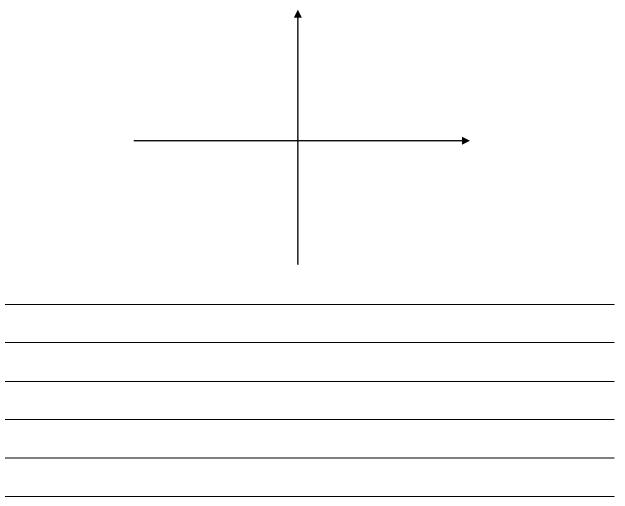
1 mark

Total: 4 marks

Question 7

Find the value of a such that the area bounded by $y = x^2$ and y = ax is $\frac{9}{2}$.

4 marks


4 marks

\sim	uestion	\sim
()	ILLESTION	×

A spherical balloon is being inflated at the rate 10cm ³ /s. At the point where the radius of the balloon is 5cm, find the rate of change of the radius with respect to time.			

Question 9

Sketch the functions $f(x) = e^x$, $g(x) = -e^{-x}$, and (f+g)(x) on the axes below. State whether or not (f+g)(x) has any intercepts or stationary points, and give their coordinates if it does.

4 marks

Question 10

а.	Using left rectangles of width $\frac{1}{2}$, approximate the area under $y = \frac{1}{x^2}$ from $x = 2$ to $x = 3$. exact decimal answer.	Give an
		2 marks
٥.	Evaluate $\int_2^3 \frac{1}{x^2} dx$.	
		1 mark
) .	Was your approximation from part a smaller or larger than the actual area? Why?	

1 mark

Total: 4 marks

Formula sheet

Mensuration

area of a trapezium	$\frac{1}{2}(a+b)h$	volume of a pyramid	$\frac{1}{3}Ah$
curved surface area of a cylinder	$2\pi rh$	volume of a sphere	$\frac{4}{3}\pi r^3$
volume of a cylinder	$\pi r^2 h$	area of a triangle	$\frac{1}{2}bc\sin A$
volume of a cone	$\frac{1}{3}\pi r^2 h$		

Calculus

$$\frac{d}{dx}(x^n) = nx^{n-1} \qquad \qquad \int x^n dx = \frac{1}{n+1}x^{n+1} + c, n \neq -1$$

$$\frac{d}{dx}(e^{ax}) = ae^{ax} \qquad \qquad \int e^{ax} dx = \frac{1}{a}e^{ax} + c$$

$$\frac{d}{dx}(\log_e x) = \frac{1}{x} \qquad \qquad \int \frac{1}{x} dx = \log_e |x| + c$$

$$\frac{d}{dx}(\sin(ax)) = a\cos(ax) \qquad \qquad \int \sin(ax) dx = -\frac{1}{a}\cos(ax) + c$$

$$\frac{d}{dx}(\cos(ax)) = -a\sin(ax) \qquad \qquad \int \cos(ax) dx = \frac{1}{a}\sin(ax) + c$$

$$\frac{d}{dx}(\tan(ax)) = \frac{a}{\cos^2(ax)} = a\sec^2(ax)$$

$$\text{product rule} \qquad \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx} \qquad \qquad \text{quotient rule} \qquad \frac{d}{dx}(\frac{u}{v}) = \frac{\left(v\frac{du}{dx} - u\frac{dv}{dx}\right)}{v^2}$$

$$\text{chain rule} \qquad \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{approximation} \qquad f(x+h) = f(x) + hf'(x)$$

Probability

$\Pr(A) = 1 - \Pr(A')$	$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$
$\Pr(A B) = \frac{\Pr(A \cap B)}{\Pr(B)}$	transition matrices $S_n = T^n \times S_0$
mean $\mu = E(X)$	variance $var(X) = \sigma^2 = E((X - \mu)^2) = E(X^2) - \mu^2$

probability distribution		mean	variance
discrete	$\Pr(X=x)=p(x)$	$\mu = \Sigma x p(x)$	$\sigma^2 = \Sigma (x - \mu)^2 p(x)$
continuous	$\Pr(a < X < b) = \int_{a}^{b} f(x) dx$	$\mu = \int_{-\infty}^{\infty} x f(x) dx$	$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$