MATHEMATICAL METHODS (CAS)

Unit 3

Targeted Evaluation Task for School-assessed Coursework 1

2012 Test (multiple choice, short answer, extended response) on Functions for Outcomes 1 & 3

SOLUTIONS & RESPONSE GUIDE

SECTION 1- Short-answer Questions

Question 1

a.

- Translation of $\frac{\pi}{2}$ units parallel to the *x*-axis.
- Dilation by a factor of $\frac{1}{2}$ away from the *y*-axis.
- Dilation by a factor of 4 away from the *x*-axis.
- Translation of 5 units parallel to the *y*-axis.

 $(\frac{1}{2} \text{ mark for each correct transformation})$

b.
$$4\sin 2\left(x - \frac{2\pi}{3}\right) = 2$$

 $\sin 2\left(x - \frac{2\pi}{3}\right) = \frac{1}{2}, \ 0 \le x \le \pi$
(1 mark)
 $\sin 2\left(x - \frac{2\pi}{3}\right) = \frac{1}{2}, \ -\frac{2\pi}{3} \le x - \frac{2\pi}{3} \le \frac{\pi}{3}$
 $\sin 2\left(x - \frac{2\pi}{3}\right) = \frac{1}{2}, \ -\frac{4\pi}{3} \le 2\left(x - \frac{2\pi}{3}\right) \le \frac{2\pi}{3}$
(1 mark)
 $2\left(x - \frac{2\pi}{3}\right) = -\frac{7\pi}{6}, \ \frac{\pi}{6}$
(1 mark)
 $x = \frac{\pi}{12}, \ \frac{3\pi}{4}$
(1 mark)

Question 2

$LHS = \log_a 4x^2 + \log_a 4x - \log_a x^5$	
$= \log_a\left(\frac{16x^3}{x^5}\right) = \log_a\left(\frac{16}{x^2}\right)$	
	(1 mark)
$=\log_a\left(\frac{4}{x}\right)^2$	
$=\log_a\left(\frac{x}{4}\right)^{-2}$	
$=-2\log_a\left(\frac{x}{4}\right)=\text{RHS}$	
	<i></i>

(1 mark)

Question 3

$$2x^{4} + 5x^{3} + x^{2} = 0$$

$$x^{2}(2x^{2} + 5x + 1) = 0$$

$$x = 0 \text{ is one solution and } 2x^{2} + 5x + 1 = 0 \text{ will give the other solutions}$$

Using the quadratic rule on $2x^2 + 5x + 1 = 0$ $x = \frac{-5 \pm \sqrt{25 - 8}}{2 \times 2} = \frac{-5 \pm \sqrt{17}}{4}$: the other two solutions are $x = \frac{-5 - \sqrt{17}}{4}$ and $\frac{-5 + \sqrt{17}}{4}$ (2 mark) **Question 4 a.** The asymptote at x = 0.75 means that 0.75b + c = 0c = -0.75b(1)(1 mark)The *x*-intercept at 1 means that b + c = 1(2)(1 mark)And combining equations (1) and (2) b - 0.75b = 1b = 4c = -3(1 mark) **b.** $y = a \log_{e}(4x - 3)$ using values from part **a.** Substituting in the given point values $a \log_{a} 3 = \log_{a} 9 = \log_{a} 3^{2} = 2 \log_{a} 3$ a = 2(1 mark)

(1 mark)

SECTION 2 Multiple-choice questions (1 mark each)

Question 1

Answer: D

Explanation

Graph can be considered a cosine graph of the form $y = a \cos n(x+b)$. a = amplitude = 3.

Period, T = π and $n = \frac{2\pi}{T} = \frac{2\pi}{\pi} = 2$. There is a horizontal shift of $-\frac{\pi}{4}$ units, so b = $\frac{\pi}{4}$

Question 2

Answer: B

Explanation

A function will have an inverse if and only if it is a one-to-one function. All the functions are one-to-one over their given domains except for B.

Question 3

Answer: E

Explanation

 $g[f(x)] = (\sqrt{x-4})^2 = x-4$ $\therefore g[f(7)] = 7-4=3$

Question 4

Answer: C Explanation $f[g(x)] = \sqrt{x^2 - 4}$ which is defined for $x^2 - 4 \ge 0$ $\therefore x^2 \ge 4$ $x \ge |2|$ $x \le -2$ or $x \ge 2$

Question 5

Answer: C Explanation Let $y = \sqrt{x+5} - 2$ and interchange x and y. $x = \sqrt{y+5} - 2$ $(x+2)^2 = y+5$ $y = (x+2)^2 - 5$

Question 6

Answer: D

Explanation

dom $f^{-1}(x) = ran f(x) = [3,12]$ from the graph of y = f(x) below.

Question 7

Answer: A Explanation

Let
$$0 = \frac{1}{2} \log_e (x-1) + 3$$

 $-6 = \log_e (x-1)$
 $e^{-6} = x - 1$
 $x = e^{-6} + 1$

Question 8

Answer: E Explanation

The *y*-intercept will change but the other two will remain the same.

Question 9

Answer: B Explanation Reflection gives $y = -(e^x + 3) = -e^x - 3$ First translation gives $y = -e^{(x+2)} - 3$ Second translation gives $y = -e^{(x+2)} - 2$

Question 10

Answer: E

Explanation

The graph of y = |(x-2)(x-4)| + 3, $0 \le x \le 5$ is shown below.

The *y*-values range from 3 to 11.

SECTION 3- Analysis Questions

a. i. Substituting the given values into the function $Ae^{2k} = 5000$ (1) $Ae^{5k} = 12500$ (2)(1 mark) Dividing (2) by (1) $e^{3k} = 2.5$ $k = \frac{\log_e 2.5}{3} = 0.3054$ (1 mark) ii. Substituting for k in equation (1) and rearranging $A = \frac{5000}{e^{0.6108}} = 2715$ (1 mark) $2715e^{0.3054t} = 30000$ iii. $0.3054t = \log_e \left(\frac{30000}{2715}\right)$ $t = \frac{\log_{e} \left(\frac{30000}{2715}\right)}{0.3054} = 7.866 \text{ hrs}$ (1 mark) t = 7 hrs 52 minTime will be 4.52 pm (1 mark) b. i. $B = \frac{A}{3} = 905$ (1 mark) n = 2k = 0.6108ii. (1 mark) c. Let g(x) = h(x) $2e^{2t} + 5 = 11e^{t}$ $2e^{2t} - 11e^{t} + 5 = 0$ (1 mark) Let $e^t = x$ $2x^2 - 11x + 5 = 0$ (1 mark)(2x-1)(x-5) = 0 $x = \frac{1}{2}$ or 5 (1 mark)

$$e^{t} = \frac{1}{2} \text{ or } 5$$

$$t = \log_{e} \frac{1}{2} \text{ or } \log_{e} 5$$

(1 mark)

But
$$\log_e \frac{1}{2} < 0$$
 and $t \ge 0$
 $\therefore t = \log_e 5$ is the only solution

i.
$$\frac{P-500}{16000} = e^{-0.2t}$$

 $t = -5\log_e\left(\frac{P-500}{16000}\right)$ (1 mark)

ii. Initial population = 16000 + 500 = 16500 and $\frac{16500}{10} = 1650$ (1 mark)

$$t = -5\log_e\left(\frac{1650 - 500}{16000}\right) = 13.16 \text{ hrs}$$
 (1 mark)

© TSSM 2012

(1 mark)