MATHEMATICAL METHODS (CAS)

Unit 3 Targeted Evaluation Task for School-assessed Coursework 2

2012 Test (multiple choice, short answer, extended response) on Differentiation for Outcomes 1 & 3

SOLUTIONS & RESPONSE GUIDE

SECTION 1- Short-answer Questions

Question 1

- **a.** $f'(x) = 6x^2 + 2x 4$ (1 mark)
- **b.** Let f'(x) = 0 (1 mark)

$$2(3x^{2} + x - 2) = 0$$

$$2(3x - 2)(x + 1) = 0$$

$$x = \frac{2}{3}, -1$$

(1 mark)

c.
$$\{x: x < -1\} \cup \{x: x > \frac{2}{3}\}$$
 (1 mark)

Question 2

a. Gradient, $m_T = \frac{dy}{dx} = e^{-2x} - 2xe^{-2x}$

When
$$x = 1$$
, $m_T = e^{-2} - 2e^{-2} = -e^{-2} = \frac{-1}{e^2}$ (1 mark)

b. Gradient of normal,
$$m_N = \frac{-1}{m_T} = e^2$$

c. When
$$x = 1$$
, $y = e^{-2}$ (1 mark)
(1 mark)

$$y - e^{-2} = e^{2}(x - 1)$$

$$y = e^{2}x - e^{2} + e^{-2}$$

Question 3

a.
$$f'(t) = \frac{2x}{3} + \frac{1}{8}\cos\left(\frac{t}{8}\right)$$
 (1 mark)
 $f'(5) = \frac{10}{3} + \frac{1}{8}\cos(0.625) = 3.435 \,\mathrm{ms}^{-1}$

b. Average velocity
$$=\frac{f(10) - f(5)}{10 - 5}$$
 (1 mark)

Average velocity =
$$\frac{\left(\frac{100}{3} + \sin 1.25\right) - \left(\frac{25}{3} + \sin 0.625\right)}{5} = 5.073 \,\mathrm{ms}^{-1}$$
 (1 mark)

(1 mark)

(1 mark)

(1 mark)

Question 4

 $\frac{dy}{dx} = 2ax - 4a$ y is a minimum when $\frac{dy}{dx} = 0$, that is when 2ax - 4a = 0 $\therefore 2a(x-2) = 0 \Rightarrow x = 2$ 1 mark When x = 2, y = 4a - 8a + 20 = 20 - 4a

© TSSM 2012

1 mark

SECTION 2 Multiple-choice questions (1 mark each)

Question 1

Answer: C

Explanation

The gradient of the tangent of a curve at a particular point gives the gradient of the curve at that point. In function terminology the gradient at x = a is given by f'(a) or as a limit it is

given by $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Question 2

Answer: A

Explanation

$$\lim_{x \to 1} \frac{(3x+1)(x-1)}{x^2 e^x - x e^x} = \lim_{x \to 1} \frac{(3x+1)(x-1)}{x e^x (x-1)} = \lim_{x \to 1} \frac{3x+1}{x e^x} = \frac{4}{e} = 4e^{-1}$$

Question 3

Answer: B

Explanation

 $\frac{d(\log_e(3x))}{dx} = \frac{3}{3x} = \frac{1}{x}$ using the chain rule.

Question 4

Answer: E

Explanation

Using the quotient rule with $u = e^{3x}$ and $v = x^2$ $\frac{dy}{dx} = \frac{3x^2 e^{3x} - 2x e^{3x}}{x^4} = \frac{x e^{3x} (3x-2)}{x^4} = \frac{e^{3x} (3x-2)}{x^3}$

Question 5

Answer: D

Explanation

Using the chain rule with $f(x) = 6u^{\frac{1}{2}}$ and $u = 3 - x^2 \Rightarrow \frac{du}{dx} = -2x$

$$f'(x) = 6 \times -2x \times \frac{1}{2}u^{-\frac{1}{2}} = \frac{-6x}{u^{\frac{1}{2}}} = \frac{-6x}{\sqrt{3-x^2}}$$

Question 6

Answer: D

Explanation

 $\frac{dy}{dx} = 10x - 8$ Gradient at x = 1 is 10×1-8 = 2 When x = 1, y = 5×1-8×1+2 = -1 y - -1 = 2(x - 1) y = 2x - 3

Question 7

Answer: C

Explanation

f'(x) = 0 at the maximum turning point, x = -2 and the stationary point of inflection, x = 3. Because x = -2 is a maximum, f(x) will be increasing to the left of x = -2 and decreasing to the right of x = -2 up to x = 3. Also the change in f(x) will be the same (that is, decreasing) on both sides of the stationary point of inflection.

Question 8

Answer: B

Explanation

Using the product rule with $u = x^2$ and $v = \cos 4x$ $\frac{d}{dx}(x^2\cos 4x) = 2x\cos 4x + x^2 \times -4\sin 4x$ $= 2x(\cos 4x - 2x\sin 4x)$

Question 9

Answer:D

Explanation

Graph the function on a graphics calculator and use the gradient calculation function.

Question 10

Answer:E

Explanation

Graph the function on a graphics calculator and use the minimum calculation function.

SECTION 3- Analysis Questions

Question 1

a.
i.
$$V = \frac{\pi r^2 l}{2} = 62500\pi$$

 $l = \frac{125000}{r^2}$
(1 mark)

ii.
$$A = \frac{2\pi r^2 + 2\pi r l}{2} = \pi r^2 + \pi r l$$
$$A = \pi r^2 + \frac{\pi r \times 125000}{r^2}$$
(1 mark)

$$A = \pi r^2 + \frac{125000\pi}{r}$$
(1 mark)

iii.
$$\frac{dA}{dr} = 2\pi r - \frac{125000\pi}{r^2} = 0 \text{ for minimum area}$$
(1 mark)

$$2\pi r = \frac{125000\pi}{r^2}$$

$$r^3 = 62500$$

$$r = \sqrt[3]{62500}$$
(1 mark)

iv. Substituting $r = \sqrt[3]{62500} \approx 39.685$ into the area function gives A = 14843 cm². (1 mark)

v.
$$r = \sqrt{\frac{125000}{l}}$$

When $l = 75$, $r = \sqrt{\frac{125000}{75}} = 40.8248$ (1 mark)
 $\Rightarrow \frac{dA}{dr} = 2\pi \times 40.8248 - \frac{125000\pi}{40.8248^2} = 20.89$ (1 mark)

b. i. $A = \pi r^2 + \pi r l = 20000$ $l = \frac{20000 - \pi r^2}{\pi r}$ (1 mark) **ii.** $V = \frac{\pi r^2 l}{2} = \frac{\pi r^2 (20000 - \pi r^2)}{2\pi r}$

$$V = \frac{r(20000 - \pi r^2)}{2} = \frac{20000r - \pi r^3}{2}$$
 (1 mark)

(1 mark) **iii.** From the expression for *l* in part **i**, $20000 - \pi r^2 \ge 0$ as *l* cannot be negative. $\pi r^2 \le 20000$

$$r \leq \sqrt{\frac{20000}{\pi}}$$
$$r \leq 79.79 \text{ cm} \tag{1 mark}$$

iv.
$$\frac{dV}{dr} = \frac{20000 - 3\pi r^2}{2} = 0$$
 for maximum volume (1 mark)

$$3\pi r^2 = 20000$$

 $r = \sqrt{\frac{20000}{3\pi}}$ (1 mark)

v. Substituting
$$r = \sqrt{\frac{20000}{3\pi}} \approx 46.0659$$
 into the volume function gives $V = 307106$ cm³. (1 mark)