MATHEMATICAL METHODS (CAS)

Unit 3 Targeted Evaluation Task for School-assessed Coursework 3

2012 Application task on Functions and Calculus for Outcomes 1, 2 & 3

SOLUTIONS & RESPONSE GUIDE

The marks given are allocated to the 3 outcomes according to the following: A - Outcome 1, B - Outcome 2, C - Outcome 3

SECTION 1

Question 1

- **a.** Starting point (0, 35) Minimum point (30, 10)
- **b.** In this form of a quadratic equation the minimum is at (-B, C), \therefore B = 30 and C = 10 A2
- c. At the starting point $f(0) = A(0-30)^2 + 10 = 35$ 900A = 25

$$A = \frac{1}{36}$$

d.
$$f_1(x) = \frac{1}{36}(x-30)^2 + 10$$

 $f_1(x) = \frac{1}{36}(x^2 - 60x + 900) + 10$
 $f_1(x) = \frac{x^2}{36} - \frac{5x}{3} + 35$

A1

A1

A2

e.
$$f_1'(x) = \frac{x}{18} - \frac{5}{3}$$
 A1

$$f_1'(0) = 0 - \frac{5}{3}$$

Initial gradient = $-\frac{5}{3}$
A1

Question 2

a.
$$f_2'(x) = 2ax + b$$

 $f_2'(0) = b = -2$
A1

b.
$$f_2'(30) = 60a - 2 = 0$$

 $a = \frac{2}{60} = \frac{1}{30}$
 $f_2(30) = 30 - 60 + c = 10$
 $c = 40$
A1

$$f_2(x) = \frac{x^2}{30} - 2x + 40$$
A1

c. At B,
$$f_2'(x) = \frac{x}{15} - 2 = 1$$

 $x = 45$
 $f_2(45) = 17.5$
B = (45, 17.5)
B

A1 Domain of
$$f_2(x)$$
 is [0,45]

a. $g(x) = ax^2 + bx + c$ and g'(x) = 2ax + b

$$g(45) = 2025a + 45b + c = 17.5 (1)$$

$$g(75) = 5625a + 75b + c = 25 (2)$$

$$g'(45) = 90a + b = 1 (3)$$

$$(2)-(1) \Rightarrow 3600a + 30b = 7.5 (4)$$

$$30 \times (3) \Rightarrow 2700a + 30b = 30 (5)$$

$$(4)-(5) \Rightarrow 900a = -22.5$$

$$a = -\frac{1}{40}$$

Substituting in (3)

$$-\frac{9}{4} + b = 1$$
$$b = \frac{13}{4}$$

A1

A1

B1

A1

Substituting in (1)

$$-\frac{2025}{40} + \frac{584}{4} + c = \frac{35}{2}$$

$$c = -\frac{625}{8}$$
A1

$$g(x) = -\frac{x^2}{40} + \frac{13x}{4} - \frac{625}{8}$$
A1

b. Let
$$-\frac{x^2}{40} + \frac{13x}{4} - \frac{625}{8} = 5$$

Remove the fractions by multiplying both sides by 40
 $-x^2 + 130x - 3125 = 200$
 $x^2 - 130x + 3325 = 0$
A1
 $x = \frac{130 \pm \sqrt{130^2 - 4 \times 3325}}{2 \times 1}$
 $x = \frac{130 \pm 60}{2}$
 $x = 35 \text{ or } x = 95$

But the second section only starts at x = 45, so x = 95 is the only solution. B1

Thus the second section ends at (95, 5) and therefore the domain of g(x) is (45, 95)

B1

c. $g'(x) = -\frac{x}{20} + \frac{13}{4} = 0$ at the maximum	
$-\frac{x}{20} = -\frac{13}{4}$	
x = 65	A1
g(03) = 27.3	
Maximum at (65,27.5)	

SECTION 2

Question 1

a.
$$h_1'(x) = 3ax^2 + 2bx + c$$

 $h'(0) = 0 + 0 + c = -2$
 $c = -2$

b.
$$2700a + 60b = 2$$

 $27000a + 900b + d = 70$
 $857375a + 9025b + d = 195$

c.

$$\begin{bmatrix} 2700 & 60 & 0\\ 27000 & 900 & 1\\ 857375 & 9025 & 1 \end{bmatrix} \begin{bmatrix} a\\ b\\ d \end{bmatrix} = \begin{bmatrix} 2\\ 70\\ 195 \end{bmatrix}$$

$$\mathbf{d.} \quad \mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

e.
$$h_1(x) = -0.0003138x^3 + 0.04745x^2 - 2x + 35.76$$

C2

B2

B1

A1

g. (70.8, 20.6)

Question 2

a. Very little or no effect for small values of x but as x increases above about 40, the y-values start to decrease significantly and the decrease becomes larger as x increases. The maximum also moves downwards and to the left. If a is decreased sufficiently the minimum and maximum merge to form a point of inflection.

B2, C1

C1

b. Very little or no effect for small values of *x* but as *x* increases above about 15, the y-values start to increase significantly and the increase becomes larger as *x* increases. The maximum also moves upwards and to the right.

B2, C1

c. a = -0.00035 and b = 0.0509 give the required features quite closely. Other solutions may be possible.

d. The whole graph would be moved up or down parallel to the *y*-axis.

2012 MATHEMATICAL METHODS (CAS) SCHOOL-ASSESSED COURSEWORK

SECTION 3

Question 1

Question 2

a. j(x) is a product of 2 functions so need to use the product rule. However the first function is a composite function so it will have to be differentiated using the chain rule. Let $y = u^2$ where $u = \cos(bx)$

$$\frac{dy}{dx} = 2u \times -b\sin(bx) = -2b\cos(bx)\sin(bx)$$
$$j'(x) = a\cos^2(bx) \times -ce^{-cx} - 2ab\cos(bx)\sin(bx) \times e^{-cx}$$
$$j'(x) = -a\cos(bx)e^{-cx}(c\cos(bx) + 2b\sin(bx))$$

b. Let j'(x) = 0

 $-a\cos(bx)e^{-cx}(c\cos(bx)+2b\sin(bx))=0$

Now
$$e^{-cx} \neq 0$$
, $\therefore \cos(bx) = 0$ or $c \cos(bx) + 2b \sin(bx) = 0$

If
$$\cos(bx) = 0$$

$$bx = \frac{\pi}{2}, \ \frac{3\pi}{2}$$
$$x = \frac{\pi}{2b}, \ \frac{3\pi}{2b}$$
B1

These 2 solutions occur when cos(bx) = 0 which means that j(x) = 0 as well. Considering the graph from **Question 1** of this section the minima occur when j(x) = 0 so these solutions give the minima.

A1

B1

If
$$c \cos(bx) + 2b \sin(bx) = 0$$

 $c + \frac{2b \sin(bx)}{\cos(bx)} = 0$
 $c + 2b \tan(bx) = 0$
 $\tan(bx) = -\frac{c}{2b}$
 $bx = \tan^{-1}\left(-\frac{c}{2b}\right)$
B1

Now since *b* and *c* are positive, $-\frac{c}{2b} < 0$ and hence $\tan^{-1}\left(-\frac{c}{2b}\right) < 0$

The first two positive solutions will be obtained for

$$bx = \tan^{-1} \left(-\frac{c}{2b} \right) + \pi \text{ and } bx = \tan^{-1} \left(-\frac{c}{2b} \right) + 2\pi$$
$$x = \frac{1}{b} \left[\tan^{-1} \left(-\frac{c}{2b} \right) + \pi \right] \text{ and } \frac{1}{b} \left[\tan^{-1} \left(-\frac{c}{2b} \right) + 2\pi \right]$$
B2

As the first pair of solutions give the minima this second pair of solutions must give the maxima.

B1

Question 3

a. 40

A1

A1

C2

B2

B2

b. From **b.** the second minimum occurs when $x = \frac{3\pi}{2b}$

If
$$95 = \frac{3\pi}{2b}$$

$$b = \frac{3\pi}{190}$$
A1

c. c = 0.0075 and x = 61.81

Question 4

- **a.** Because of the trigonometric term in the rule of j(x), extending the function over a larger domain will automatically generate more maxima and minima thus continuing the up and down nature of the track.
- **b.** The track would have an "amplitude" of 35 10 = 25 m so a = 25. Also as the minimums have been raised by 10 m there would have to be a constant term of 10 added to the rule of j(x).
- c. The *x*-values of the turning points of j(x), as found in Question 2 b. above, are independent of *a* so changing *a* will have no effect. Also the derivative of a constant term is zero so the constant term will not affect the horizontal position of the turning points.

Section	Question	Part	Outcome 1	Outcome 2	Outcome 3
1	1	a	2		
		b	2		
		с	2		
		d	1		
		e	2		
	2	a	1		
		b	3		
		с	2	1	
	3	a	4	1	
		b	2	2	
		с	1	1	
		d	2	2	
2	1	a	1		
		b		3	
		с		2	
		d		1	
		e			2
		f	1	1	
		g			1
	2	a		2	1
		b		2	1
		с		2	2
		d		1	
3	1			2	1
	2	a		3	
		b	1	8	
	3	a	1		
		b	2		
		c			2
	4	a		2	
		b		2	
		c		2	
Raw Marks		30	40	10	
Adjusted Marks		15	20	5	

Summary of mark allocation per Outcome