MATHEMATICAL MATHODS (CAS)

Unit 4 Targeted Evaluation Task for School-assessed Coursework 1

2012 Analysis Problems Task on Logs & Exponentials for

Outcomes 1, 2 & 3

SOLUTIONS & RESPONSE GUIDE

The marks given are allocated to the 3 outcomes according to the following: A – Outcome 1, B – Outcome 2, C – Outcome 3

Question 1

ו		
a.	$2^{x+1} = \left(2^3\right)^{3x} = 2^{9x}$	A1
	Equating indices $\Rightarrow x+1=9x$	111
	$x = \frac{1}{8}$ or $x = 0.125$	4.1
	5	A1
b.	$e^{-5x} = 12$	
	$x = \frac{\ln(12)}{-5} = -0.4970$	C1
Ωι	lestion 2	
-		
a.	$\log_5 2x = \log_5 4^3 = \log_5 64$	
	2x = 64	
	<i>x</i> = 32	
		A1

b. LHS =
$$\log_7 x^2 + \log_7 x^{-6} - \log_7 3^4$$

= $\log_7 \left(\frac{x^2 x^{-6}}{3^4} \right)$
= $\log_7 \left(\frac{1}{3^4 x^4} \right)$
= $\log_7 (3x)^{-4}$
= $-4 \log_7 3x$ as required

Question 3

a. Let $y = 16(1 - e^{-0.4x})$ Interchanging *x* and *y* $x = 16(1 - e^{-0.4y})$

B1

$$\frac{x}{16} = 1 - e^{-0.4y}$$

$$e^{-0.4y} = 1 - \frac{x}{16}$$

$$y = \frac{1}{-0.4} \log\left(1 - \frac{x}{16}\right)$$

$$f^{-1}(x) = -2.5 \log\left(1 - \frac{x}{16}\right)$$
A1

b. dom
$$f^{-1} = \operatorname{ran} f = [0, 16)$$

ran $f^{-1} = \operatorname{dom} f = [0, \infty)$

B1

B1

- c. Graph both functions on a graphics calculator. Using the intersection function gives the intersection point as (15.973, 15.973)
 C1
- **d.** The time elapsed from when the parachutist jumped as a function of the speed of the parachutist.
- **Question 4** 3 2 $(0, 2 - \ln 3)$ 1 $(e^2 - 3, 0)$ -4 -3 -1 -2 0 1 2 3 8 4 5 9 10 -1x = -3-2

Correct graph shape and asymptote A2 Correct intercepts B2

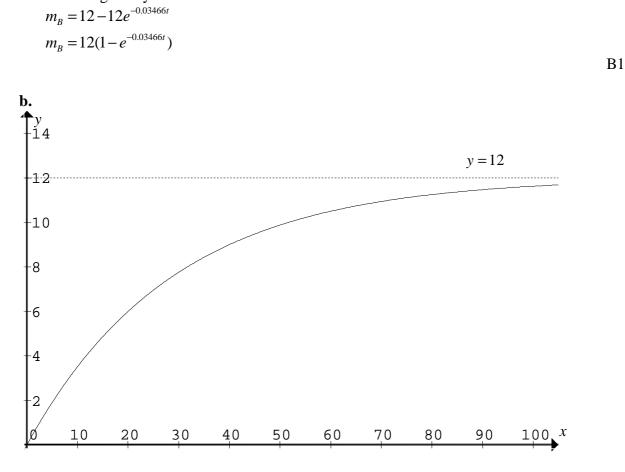
At the stationary points $\frac{dy}{dx} = 0$	
$\therefore e^x + 6e^{-x} - 5 = 0$	
$e^{2x} + 6 - 5e^{x} = 0$	
$(e^{x})^{2} - 5e^{x} + 6 = 0$	
	A1
Let $u = e^x$	
$u^2 - 5u + 6 = 0$	
(u-2)(u-3) = 0	
u = 2 or u = 3	
$e^x = 2 \text{ or } e^x = 3$	
$x = \ln 2 \text{ or } x = \ln 3$	
When $x = \ln 2$	A1
$y = 2 - \frac{6}{2} - 5\ln 2 = -1 - 5\ln 2$	
When $x = \ln 3$	
$y = 3 - \frac{6}{3} - 5\ln 3 = 1 - 5\ln 3$	
Therefore coordinates of stationary points are	

(ln2, -1-5 ln2) and (ln3, 1 -5ln3)

Question 6

a. If half the original amount remains then $m = \frac{A}{2}$ at t = 20 as A is the original amount.

$$0.5 = e^{-20k}$$
$$\ln(0.5) = -20k$$
$$k = -\frac{\ln(0.5)}{20} = 0.03466$$


b. Initial amount = $A = \frac{m}{e^{-0.03466t}}$ $A = \frac{9.48}{e^{-0.03466 \times 6.8}} = 11.9996 \approx 12$

Therefore initial amount is 12 g

B2

A1

a. The mass of B will be the difference between the original mass of A and the amount of A remaining at any time *t*.

Note: Graph should pass through (20, 6)

Correct shape and asymptote A2

c. The graph would start off like the graph in part **b** but would then gradually drop below it while still increasing for some time. The graph would then reach a maximum value and start to decrease. For larger values of *t* the graph would be very close to a typical radioactive decay curve.

a. Substituting the given values into the equation gives:

$$250 = P_0 e^{-10k}$$
(1)

$$15 = P_0 e^{-30k}$$
(2)

$$\frac{(1)}{(2)} \Rightarrow 16.6667 = e^{20k}$$

$$k = \frac{\ln(16.6667)}{20} = 0.14067 \approx 0.1407 \text{ to four decimal places}$$

B1, C1

b.
$$P_0 = \frac{250}{e^{-0.1407 \times 10}} = 1020.92$$
$$P_0 = 1021 \text{ to the nearest millibar}$$
A1, C1

c. If If
$$P = P_0 e^{-kh}$$
 then

$$h = -\frac{\ln\left(\frac{P}{P_0}\right)}{k} = \frac{\ln\left(\frac{65}{1021}\right)}{0.1407} = 19.5746 \text{ km}$$

therefore height is 19.575 km to the nearest metre

B1, C1

Question 9

Draw a graph of $y = 2xe^{-0.08x} + 0.0017x^2$ on a graphics calculator.

a. Use the maximum and minimum functions to find: Maximum at (13.3218, 9.4797) and minimum at (43.9605, 5.8959)

- C2
- **b.** Either use the *x*-Cal function to find the values when y = 7.8 or find the intersections of the graph of $y = 2xe^{-0.08x} + 0.0017x^2$ with y = 7.8. Correct set of values is: (6.4990, 25.1578) \cup (64.4235, ∞).

Correct intersection points C2 Correct range of values C1

a. Using the product and chain rules: $f'(x) = 2(x-a)e^{-bx} - b(x-a)^2e^{-bx}$

And factorising gives:
$$f'(x) = (x-a)[2-b(x-a)]e^{-bx}$$

B1

A1

b. Let
$$(x-a)[2-b(x-a)]e^{-bx} = 0$$

 $e^{-bx} \neq 0$ therefore
 $(x-a) = 0$ or $2-b(x-a) = 0$
 $x = a$ or $x = \frac{2}{b} + a$

Question	Part	Outcome 1	Outcome 2	Outcome 3
1	a	2		
1	b			1
2	a	1		
2	b	1	1	
	a	1	1	
2	b		1	
3	с			1
	d		1	
4		2	2	
5		3		
6	a		2	
U	b		1	
	a		1	
7	b	2		
	с		2	
	a		1	1
8	b	1		1
	С		1	1
9	a			2
9	b			3
10	a	1	1	
10	b		1	
Raw ma	rks	14	16	10
Adjusted r	narks	7	8	5

Summary of mark allocation by Outcome