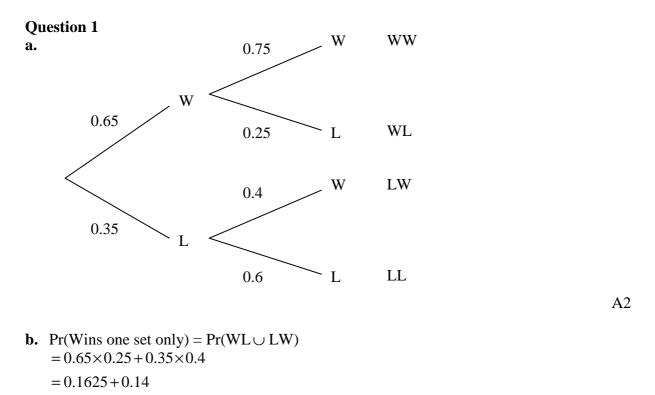
MATHEMATICAL MATHODS (CAS)

Unit 4 Targeted Evaluation Task for School-assessed Coursework 4

2012 Item Analysis Task on Probability for Outcomes 1, 2 & 3

SOLUTIONS & RESPONSE GUIDE

The marks given are allocated to the 3 outcomes according to the following: A – Outcome 1, B – Outcome 2, C – Outcome 3



A1

B1

c. The probability of only one way of winning one set is found rather than both ways.

Question 2

= 0.3025

a. This is a conditional probability

$$Pr(\text{Wins first set}|\text{Wins one set only}) = \frac{Pr(\text{Wins first set} \cap \text{Wins one set only})}{Pr(\text{Wins one set only})}$$

$$= \frac{0.1625}{0.3025} \text{ (Using results from Question 1)}$$

$$= 0.5372 \text{ and alternative D is correct.}$$
A1, B1
b. Interpreting the question as Pr(Wins one set only|Wins first set)
This leads to
$$\frac{Pr(\text{Wins first set} \cap \text{Wins one set only})}{Pr(\text{Wins first set})} = \frac{0.1625}{0.65} = 0.25$$

0.65

B1

c. Adding the probabilities of winning the first set and winning one set only.

B1

- a. $\mu = \sum x \Pr(X = x)$ $\mu = 2 \times 0.1 + 3 \times 0.3 + 4 \times 0.4 + 5 \times 0.2 = 3.7$
- A1
- **b.** Finding the mean of the values of *x*.

c. Increasing each *x*-value by 2.

A1

d. Let $x = \Pr(X = 2)$ and $y = \Pr(X = 4)$ $\sum \Pr(X = x) = 1$ $\therefore x + 0.2 + y + 0.4 = 1$ x + y = 0.4 (1) $\sum x \Pr(X = x) = 3.7$ $\therefore 2x + 0.6 + 4y + 2.0 = 3.7$ 2x + 4y = 1.1 (2)

(2) - 2×(1) ⇒ 2y = 0.3 ∴ y = 0.15 and x = 0.25 So Pr(X = 2) = 0.25 and Pr(X = 4) = 0.15

A1

B2

Question 4

a.
$$E(X^2) = \sum x^2 \Pr(X = x)$$

 $E(X^2) = 4 \times 0.1 + 9 \times 0.3 + 16 \times 0.4 + 25 \times 0.2 = 14.5$

A1 $Var(X) = E(X^2) - [E(X)]^2$ $Var(X) = 14.5 - 3.7^2 = 0.81$ $\sigma = \sqrt{Var(X)} = \sqrt{0.81} = 0.90$

Therefore **D** is the correct answer.

b.

- **i.** Finding the variance but then failing to take the square root to find the standard deviation.
- ii. Finding the variance using $Var(X) = E(X^2) [E(X)]$ rather than

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

c. One or both of Pr(X = 2) and Pr(X = 5) would need to be made larger and one or both of Pr(X = 3) and Pr(X = 4) would need to be made smaller.

B2

A2

A1

a. For a binomial distribution $Pr(X = x) = {}^{n}C_{x}p^{x}(1-p)^{n-x}$ For this distribution n = 8 $\therefore Pr(X = 3) = {}^{8}C_{3}p^{3}(1-p)^{5} = 0.2668$ $56p^{3}(1-p)^{5} = 0.2668 \text{ or } p^{3}(1-p)^{5} = 0.004764$ B1

- **b.** Using the Numeric Solver application gives p = 0.32
- c. $\mu = np = 8 \times 0.32 = 2.56$ $\sigma = \sqrt{np(1-p)} = \sqrt{8 \times 0.32 \times 0.68} = 1.319$ \therefore Alternative **B** is the correct answer.

d.

- i. Finding the variance instead of the standard deviation
- ii. Using $\mu = nq = n(1-p)$ to find the mean. That is, using the probability of failure rather than the probability of success for *p*.

A2

C2

A1

e.

i.
$$\sqrt{np(1-p)} = 1.2$$

 $8p(1-p) = 1.44$
 $p^2 - p + 0.18 = 0$
 $p = \frac{1 \pm \sqrt{1 - 4 \times 1 \times 0.18}}{2 \times 1} = 0.2354 \text{ or } 0.7646$

But p = 0.2354 gives $\mu = 1.88$ which is less than the value found in part **a**. $\therefore p = 0.7646$

B2

ii. Bi(8, 0.7646, 3) = 0.0181 C1

a. Let X represent the number of people who like the product. X is a binomial distribution with n = 20 and p = 0.6. Pr $(11 \le X \le 15) = Pr(X \le 15) - Pr(X \le 10)$

binomcdf (20, 0.6, 15) – binomcdf (20, 0.6, 10)= 0.94905 – 0.24466 = 0.7044

Therefore alternative C is correct

b. The probabilities are added. $Pr(X \le 15) + Pr(X \le 10) = 0.94905 + 0.24466 = 1.1937$ However this value is greater than 1 and as all probabilities must lie between 0 and 1 it can be rejected as an impossible alternative.

Question 7

a.
$$S_0 = \begin{bmatrix} 0 \\ 500 \end{bmatrix}$$
 and $T = \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix}$ or $S_0 = \begin{bmatrix} 500 \\ 0 \end{bmatrix}$ and $T = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}$
A1

- **b.** $S_2 = T^2 S_0$
 - $S_{2} = \begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix}^{2} \begin{bmatrix} 0 \\ 500 \end{bmatrix} = \begin{bmatrix} 260 \\ 240 \end{bmatrix} \text{ or } S_{2} = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}^{2} \begin{bmatrix} 500 \\ 0 \end{bmatrix} = \begin{bmatrix} 240 \\ 260 \end{bmatrix}$

Therefore 260 people go to Ausfilm cinema in the second week and alternative \mathbf{E} is correct. C2

c.

i. Misreading the answer matrix and taking the Boyts value as the Ausfilm value.

B1

C2

A1

C1

B1, C1

ii. Using an incorrect *T* matrix due to entering the probabilities in the incorrect positions in the matrix. If $S_0 = \begin{bmatrix} 0 \\ 500 \end{bmatrix}$ then using $T = \begin{bmatrix} 0.3 & 0.6 \\ 0.7 & 0.4 \end{bmatrix}$ gives $S_2 = \begin{bmatrix} 210 \\ 290 \end{bmatrix}$ and hence 210 people going to Ausfilm cinema in the second week

Question 8

a. When the numbers attending each cinema have reached their long term values $S_{n-1} = S_n$ If x is the number of people attending the Ausfilm cinema in the long term then

$$\begin{bmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{bmatrix} \begin{bmatrix} x \\ 500 - x \end{bmatrix} = \begin{bmatrix} x \\ 500 - x \end{bmatrix}$$
B1

:.
$$0.7x + 0.4(500 - x) = x$$

 $0.3x + 200 = x$
 $x = \frac{200}{0.7} = 285.7$
and rounding up gives 286 which is alternative **E**

And rounding up gives 286 which is alternative **E**.

A2

- **b.** The answer was incorrectly rounded down to 285
- **c.** Insufficient number of iterations. For example T^5S_0 gives 285.

C1

A1

Question 9

a. If the median value is *a* then:

 $\frac{1}{2}$

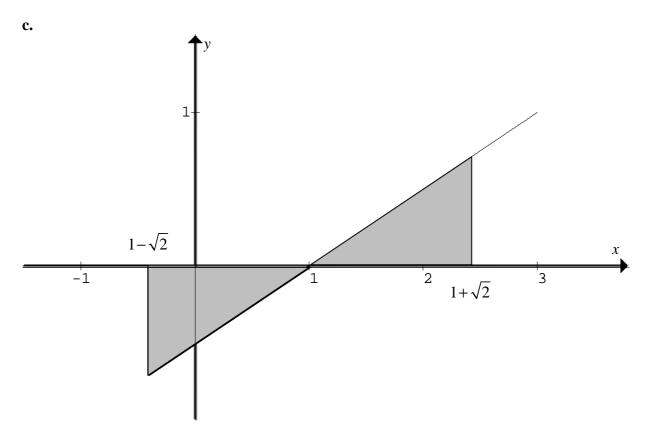
$$\int_{1}^{a} \left(\frac{x}{2} - \frac{1}{2}\right) dx = \left[\frac{x^{2}}{4} - \frac{x}{2}\right]_{1}^{a} = \frac{1}{2}$$
$$\frac{a^{2}}{4} - \frac{a}{2} - \frac{1}{4} = 0$$
$$a^{2} - 2a - 1 = 0$$

Solving this quadratic equation gives $a = 1 \pm \sqrt{2}$. But $1 - \sqrt{2} < 1$ so the only solution for the given function is $1+\sqrt{2}$ which is alternative **E**.

A1, B1

b. Assuming that the median was halfway between the lower and upper limits of the domain of the probability density function. This may be true for a symmetrical function but the given function is not symmetrical.

B1



If the graph of the function is extended back to the left it can be seen that the area between the graph and the *x*-axis from $x=1-\sqrt{2}$ to x=1 is also 0.5. Therefore $x=1-\sqrt{2}$ can also be a solution of the equation used in part **a**.

A1, B1

Question 10

a. The mean of a continuous random variable is given by $\int_{0}^{\infty} xf(x) dx$

For the given function $\mu = E(X) = \int_{0}^{\pi} \frac{4x^2 \sin^2 x}{\pi^2} dx$. Graphing this and using the numeric integration function on a graphics calculator gives a value of 1.7761 which is alternative **C**. A1, C1

b.
$$E(X^2) = \int_{0}^{\pi} \frac{4x^3 \sin^2 x}{\pi^2} dx = 3.4348$$
 using a graphics calculator
 $\sigma = \sqrt{E(X^2) - [E(X)]^2} = \sqrt{3.4348 - 1.7761^2} = 0.5294$
A1, C1

c. Using the maximum function of the graphics calculator the maximum can be shown to be at x = 1.8366. The mean can sometimes be confused with the mode, which is the most frequently occurring value. In a continuous distribution this would be equivalent to the *x*-value of the maximum of the probability density function

B1, C1

a. Let the random variable X denote the life of a battery. X is normally distributed with $\mu = 30$ and $Pr(X \ge 36) = 0.05$ If Z is the standard normal distribution and $Pr(Z \ge 5) = 0.05$ then $Pr(Z \le 5) = 0.05$

If *Z* is the standard normal distribution and $Pr(Z \ge z) = 0.05$ then Pr(Z < z) = 0.95

$$z = InvNorm(0.95) = 1.64485$$

$$z = \frac{x - \mu}{\sigma}$$

$$\sigma = \frac{x - \mu}{z} = \frac{36 - 30}{1.64485} = 3.65 \text{ months}$$

Therefore alternative **C** is the correct answer.

B1, C1

A1

- **b.** Because Pr(Z < z) = 0.95 this may be confused with the general rule that $Pr(\mu - 2\sigma \le Z \le \mu + 2\sigma) = 0.95$ leading to the assumption that 36 is 2 standard deviations from the mean and hence that the standard deviation of is $\frac{36-30}{2} = 3$ months. B1
- c. If $\mu = 30$ and $\sigma = 6.32$ Pr($X \ge 36$) = normalcdf (36, ∞ .30.6.32) = 0.1712 using the graphics calculator.

C1

Question	Part	Outcome 1	Outcome 2	Outcome 3
1	a	2		
	b	1		
	c		1	
2	a	1	1	
	b		1	
	c		1	
3	a	1		
	b	1		
	c		1	
	d	1	2	
4	a	2		
	b	2		
	c		2	
5	a		1	
	b			2
	c	1		
	d	2		
	e		2	1
6	a	1		1
	b		1	1
7	a	1		
	b			2
	c		1	2
8	a	2	1	
	b	1		
	c			1
9	a	1	1	
	b		1	
	с	1	1	
10	a	1		1
	b	1		1
	c		1	1
11	a	1	1	1
	b		1	
	с			1
Raw Marks		24	21	15
Adjusted Marks		8	7	5

Summary of mark allocation per Outcome