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SECtion 1

Question 1 C

	 	 sin(x)	=	sin2	(x)

sin(x)(1–	sin(x))	=	0

	 sin(x)	=	0	or	1

x= 0 2
2

, ,π π
π

 or ,	i.e.	a	total	of	4	solutions.

Alternatively,	a	graph	shows	4	intersections	over	the	domain.

0.8

0.6

0.4

0.2

0

–0.2
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 x

–0.4

–0.6

–0.8

Question 2 E

We have 

So 

f x dx f x dx f x dx

a f x dx b

a

( ) ( ) ( )

( )

− −

−

∫ ∫ ∫

∫

= +

= +

=

2

4

2

3

3

4

2

3

−− +

= −

−

−

∫

∫

f x dx b

f x dx b a

( )

( )

3

2

3

2

Question 3  E

f

f

−





=
−
=−

− =
−
+ =

1

3

1
1
3

3

3
1

3

1

2

1

6
( )

Question 4 A
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If	h	is	differentiable	at	x	=	1,	then

h A B
A B

h x
x A x
x

( )

( )

1 1 1 8 4
10

2 1
2 8

= + + =− + +
+ =

′ =
+ <

− +
also 

        
       x

h A
A

≥






′ = + =− +
=

1
1 2 2 8

4
( )

Thus	B	=	6.

Question 5 C

Checking	each	function:

Inverse of  is clearly 

 so inverse i

f x x f x x

g x
x

( ) ( ) .

( )

= =

=

−1

4 ss given by  i.e. 

 so inverse is given by

x
y

y
x

h x x
x

= =

=
−

4 4

1
( )   . CAS solve gives 

 so inverse is gi

x y
y

y x
x

j x x
x

=
−

=
−

=
−

1 1
2( ) vven by . CAS solve gives x y

x
y

x
j x=

−
=
−
−
≠

2 2
1

( )

( )1 4
so g x

x
− =

( )1so 
1

x
h x

x
− =

−

.

.

.

,

Question 6 B

The	wheel	has	a	diameter	of	18	cm	so	 h hmax min= =18 0 and .

The	period	of	the	function	is	12	seconds	so,	for	a	sine	or	cosine	function,	 2
12

6

π π
n

n= ⇒ =

Now	t	=	0	corresponds	to	 hmax =18 ,	which	suggests	a	cosine	function	with	amplitude	9	and	vertical	translation	9.

Thus	 h t
t

( ) cos= +





9 9

6

π .

As	this	is	not	an	alternative	given,	use cos( ) sinx x= −








π
2

.

Thus	 h t
t

( ) sin= + −






9 9

2 6

π π
.

h t t t( ) sin sin= + −( )






= + −( )














9 9
6

3 9 1
6

3
π π 


.
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Question 7  D

f

g
x

x

x
( )=

+
−

9

6

For	f

x

x

+ ≥
≥−

9 0

9

We	must	exclude	x	=	6	because	we	cannot	divide	by	zero.	

Thus	 [ , ) ( , )− ∪ ∞9 6 6 .

Question 8  A

( ) ( )( )
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( ) ( ) ( )( )

Given ,

2 2 2

2 1 2 3 6 18

h x g f x

h x g f x f x

h g f f

h g f

=

=′ ′ ′

=′ ′ ′

= = − = −′ ′ ′

Question 9 B

x y+ = 5

Solving	for	y	by	CAS	gives	 y x x= − +25 10 .

Differentiating,	 dy

dx x
=− +

5
1 .

At	x	=	16,	gradient	of	tangent	is	− + =−
5

4
1

1

4
.

Equation	of	tangent:

y x− =− −1
1

4
16( ) 	which	has	a	y	intercept	of	5.	Therefore	k	=	5.

Equation	of	normal:

y x− = −1 4 16( ) 	which	has	a	y	intercept	of	–63.	Therefore	 h=−63 .

k h− = 68

Question 10  C

The	average	rate	of	change	of	 f x x x k( )= + +3 22 	over	the	interval	[0,	2]	is	given	by

f f k k( ) ( ) ( )2 0

2

12 4

2
8

−
=

+ + −
=

Thus	 ( )
1

2
3 22

0

2
x x k+ + 8dx=∫

x x kx

k
k

3 2
0

2
16

8 4 2 16
2

+ +



 =

+ + =
=
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Question 11 A

Define	the	events	Ri	and	Bi,	such	that	Ri	represents	a	red	ball	drawn	from	urn	i	and	Bi	represents	a	blue	ball	

drawn	from	urn	i, i =	1,	2

Let	x	be	the	number	of	blue	balls	in	urn	2.

11
25
11
25

1 2 1 2

1 2 1 2

= ∩ + ∩

= +

Pr( ) Pr( )

Pr( ) Pr( ) Pr( ) Pr( )

R R B B

R R B B

11
25
==

+







+ +









4
10

16
16

6
10 16x

x
x

OR

R

B

R

B

4

10

6

10

16

16 x+

x

16 x+

Solving	on	CAS	gives	x	=	4.

Question 12 A

Let	the	random	variable	X	represent	the	number	of	successful	first	serves.

X Bi n p∼ ( , . )
.

. .

= =
= × =

= × × =

180 0 65
180 0 65 117

180 0 65 0 35

 
µ

σ
3 455

10

Question 13 C

The	initial	state	matrix	is	 SO =











0 6

0 4

.

.
The	win-lose	probabilities	can	be	tabulated:

Tomorrow
Win Lose

Today
Win
Lose

0 80 0 25
0 20 0 75
. .
. .












Thus	the	transition	matrix	is	T =












0 8 0 25

0 2 0 75

. .

. .

The	probability	that	the	team	will	win	its	fourth	match	equals	T SO
3

3
0 8 0 25

0 2 0 75

0 6

0 4
=






















. .

. .

.

.
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Question 14 D

Let	the	increase	in	unit	price	per	hat	be	$x.

Number	of	hats	sold	is	 200 5− x .

Revenue	from	selling	this	number	of	hats	is	( )( )200 5 90− +x x .

Cost	from	manufacturer	for	this	number	of	hats	is	60 200 5( )− x .

As	profit	=	revenue	–	cost,

profit	=	 P x x x x( )= −( ) +( )− −( )200 5 90 1 60 200 5

Simplifying	on	CAS	gives	 P x x x( )=− + +5 50 60002 .

Maximum	of	when	 P x P x( ) ( ) when ′ = 0,

	 	
− + =

=
10 50 0

5

x

x
Number	of	hats	sold	is	 200 5 200 25 175− = − =x

Question 15 C

y

x

3

2

1

–1

           0.5           1         1.5           2         2.5           3         3.5–1.5 –1 –0.5 O

The	graphs	meet	when	 x x x x= − =2 0,  2

Area	bounded	by	the	graphs	equals	 x x x dx x x dx− − = −∫ ∫( ) ( )2

0

2
2

0

2
2 4

3
= .

As	x	=	k	divides	the	region	in	half,	 ( )2
2

3
2

0
x x dx

k

− =∫
x

x

k
k

k

2
3

0

2
3

3

2

3

3

2

3

−










 =

− =

Solving	gives	k	=	1.
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Question 16 A

The	graph	of	the	derivative	needs	to	change	from	positive	to	negative	within	the	domain.

This	only	occurs	for	the	graph	of	f.

Question 17 D

Range	of	 f x( ) [ , ]− −2 9 3 will be .

So	the	range	of	 f x( ) [ , ]−2 0 9 will be since	the	absolute	value	turns	the	negative	results	positive.

Finally,	the	range	of	 2 2 1 1 19f x( ) [ , ]− +  equals ,	by	doubling	the	range	and	adding	1.

Question 18 C

x kx k2 0+ + =

As	 x=−
1

2
	is	a	root,	the	equation	can	be	written	in	factored	form	as	 x x k+







 +( )=1

2
2 0

Expanding	gives	 x kx x k2 2
1

2
0+ + + =

Equating	coefficients	of	the	x	term	

2
1

2

1

2
k k k+ = =−

Now	the	other	root	is	 x k=− =− ×− =2 2
1

2
1

Alternatively,	solving	on	CAS:
2

1 1
0

2 2

1
gives 

2

k k

k

   − + − + =      

= −

2 1 1
So 0.

2 2
Solving on CAS gives

1
 or 1

2

x x

x x

− − =

= − =
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Question 19 D

–9 –8 –7 –6 –5 –4 –3 –2 –1 1 2 3 4 5 6 7 8 9

y

x

4

3

2

1

0

L2

L1
–1

–2

–3

(–a, a2) (a, a2)

y = x2

Let	the	vertex	of	the	triangle	at	the	point	of	contact	for	L1	have	coordinates	(a, a2).	In	quadrant	2	the	corresponding	

coordinates	of	the	point	of	contact	for	L2	will	have	coordinates	(–	a, a2).

Consider	L1	:
dy

dx
x a= =2 2

But	we	know	the	triangle	is	equilateral	so	 m1 60 3= =tan( )� .

Thus	

2 3

3

2

a

a

=

=

The	length	of	each	side	of	the	triangle	is	2a.

Using	the	Sine	rule	for	area	formula	(on	formula	sheet):

A a a

A a

= ×

= = ×









=

1

2
2 2 60

2
3

2
3

3

2

3 3

4
2

2

( )( )sin( )�

Question 20 A

We	require	 ( ) ( )
( )

Pr 1.5 2
Pr 2 | 1.5

Pr 1.5

V
V V

V

≤ ≤
< ≥ =

≥
.

Using	CAS,	compute	

2

41.5

1.5

41

3

3
1

dv
v

dv
v

−

∫
∫

	which	gives	 0.5781= .
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Question 21 A

The	gradient	function	 y f x= ′( ) 	has	4	x	intercepts	symmetrically	placed	either	side	of	the	y-axis.	The	function	 f x( ) 	

has	stationary	points	at	those	locations.

Both	A	and	C	satisfy	this	condition	completely.

Also	notice	 ′f ( )0 is	undefined	corresponding	to	the	cusp	on	each	of	the	graphs	in	A and	C.

Notice	that	 ′ <f x( ) 0 	for	positive	x	values	up	to	approximately	0.7.	The	gradient	of	a	tangent	to	graph	A	is	negative	

for	these	x	values,	but	graph	C	has	a	positive	gradient	for	these	x	values

Question 22 C

On	CAS,	define	 ( )9log 2x = 	and	 ( )5log 4y =

Check	each	alternative	systematically.

( )
( )
( )

log 154

1 2 log 6
e

e

x y

x y

+
=

+

By	the	change	of	base	rule,	

( )
( ) ( )6

log 15
log 15

log 6
e

e

=
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SECtion 2

Question 1 (15 marks)

a.	 x y=− =
3

4

1

2
 and 	represent	the	vertical	and	horizontal	asymptotes	respectively.

	 Thus	 dom f R( ) |= −










3

4
.	 A1

	 The	graph	touches	the	x	axis	and	is	otherwise	above	it.	We	do	not	exclude	 y=
1

2
.

	 Thus	 ran f( ) ,= ∞[ )0 .	 A1

b.	 Given	
1 5

1
2 4 3

ax b

x cx d

+
− =

+ +
,

	
1 4 3 5 1 4 2 2 1

LHS
2 4 3 2 4 3 4 3

x x x

x x x

+ − − −
= = =

+ + + .	 M1

	 This	gives	a	=	2,	b =	–1,	c =	4	and	d =	3.	 A1

c.	 i.	 g	must	be	a	one-to-one	function	with	range	 0,∞[ ) .

	 	 m n=− =
3

4

1

2
,  	 A1	A1

ii.	 For  gx x
x

x

x

x
∈ −










=−
−
+
=
−
+

3

4

1

2

2 1

4 3

1 2

4 3
, , ( ) .

	 	 The	inverse	is	given	by	solving	 x
y

y
=
−
+

1 2

4 3
.	 M1

	 	 Use	CAS	:	 y
x

x
=
−
+

1 3

4 2

	 	 Thus	 g R g x
x

x
− −∞ → =

−
+

1 10
1 3

4 2
:[ , ) , ( ) .	 A1

	 iii. 

–5 –4 –3 –2 –1 1 2 3 4 5

6

5

4

3

2

1

0
–1

–2

1
3

0,(       )
1
3

,0(       )

y  

g

g–1

x

(       )1
0,

2 (       )1
,0

2

3

4
x = −

3

4
y = −

	 Graph of g and g –1	 A1
	 Correct intercepts 	 A1
	 Correct	asymptotes	 A1
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	 iv.	 g x g x− − =1 0( ) ( )

	 	 Solve	on	CAS	the	equation	 1 3

4 2

1 2

4 3

41 5

8

−
+
=
−
+

=
−x

x

x

x
x,  giving .	 A1

d.	 For	 x f x
x

x
≤ =

−
+

0 5
1 2

4 3
. , ( ) .

	 Using	CAS,	  ′ =
−
+

f x
x

( )
( )

10

4 3 2
.	 M1

	 Thus  ′ =−f ( )0
10

9
	and	the	equation	of	the	tangent	here	is	 y x=− +

10

9

1

3
.	 A1

	 Solving	simultaneously	on	CAS:

	 y x y
x

x
=− + =

−
+

10

9

1

3

2 1

4 3
 and and	gives	intersection	at	(–1.25777,	1.73086)

	 This	gives p q=− =1 258 1 731. , . .	 A1

Question 2 (15 marks)

a.	 Using	CAS,	 y
x dy

dx

x x

ex x
= =

−3 2 33

e
 gives 

( ) .	 A1

b.	 Stationary	points	occur	when	 dy

dx

x x

ex
=

−
=

( )3
0

2 3

		 x x x2 3 0 0( ) ,− = ⇒ =  3 	 M1

	 Thus	a	maximum	at	 3
27

3
,

e







 	and	a	stationary	point	of	inflection	at	(0,	0).	 A1	A1

c.	
x

e ex

3

3

27
≤

	 As	e3 0> ,	we	rewrite	the	in-equation:

	 x e x3 3 27− ≤ 	 M1

	 Taking	logs	of	both	sides:

	 log ( ) log ( ) log ( )e e
x

ex e3 3 27+ ≤− 	 M1

	 3 3 3 3log ( ) log ( )e ex x+ − ≤

	 Thus	 3 3 3 3log ( ) log ( )e ex x≤ + − .	 A1
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d.	 i. y

x

2

1

–1

–2

–3

–4

–2 –1 1 2 3 4 5 6 7 8 9

(0,0) (3,0) y = 0

(    )y = 
x3 
ex

d 
dx

 Intercept coordinates and asymptote		 A1
 Shape	 A1

	 ii.	
dy

dx

x x

ex
=

−( )3 2 3

	 	 The	maximum	and	minimum	will	occur	when	
d

dx

x x

ex

3
0

2 3−








= .

	 	 Thus	 x x x

ex

( )2 6 6
0

− +
=

	 	 x= ±3 3 	(x	=	0	is	also	a	solution.)	 M1

	 	 From	graph,	maximum	occurs	at	 x
dy

dx
e= − = − −3 3 6 2 3 3 3 3, ( ) giving .

	 	 From	graph,	minimum	occurs	at	x dy
dx

e= + =− + −3 3 6 2 3 3 3 3–, ( ) giving .	 A1

	 iii.	 A	function	is	strictly	decreasing	if	for	all,	 a b f a f b< >, ( ) ( ) .	

	 	

–2 –2 1 2 3 4 5 6 7 8 9

2.5

2.0

1.5

1.0

0.5

0

–0.5

(1.27, 0.78)

(4.73, 0.34)
(3.0)(0,0)

y = 0

x

y

y = absolute value of derivative of 
x3 
ex

	 	 From	graph,	 [ . , ] [ . , )1 27 3 4 73∪ ∞ .	 A1	M1
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e.	 Solving	the	equation	 x

e
k x

x

6

2
3= −( ) 	is	equivalent	to	solving	

x

e
k x

x

3 2

3









= −( )

	 i.e.	
x

e
k x

x

3

3









=± −( ) .	 M1

	 	 The	graph	below	illustrates,	that	for	a	negative	k,	2	solutions	are	obtained.

	 Thus	k	<	0.	 	A1

	

–9 –8 –7 –6 –5 –4 –3 –2 –1        1       2       3       4       5       6       7       8       9

y

x

4

3

2

1

0

–1

–2

–3

y =  
x3 
ex

y2 = –k(x – 3) 

Question 3 (18 marks)

a.	 i.	 Let	X	represent	the	number	of	these	enquiries	which	came	through	the	phone.

	 	

X Bi n p

E X np

np pX

∼ ( , . )

( ) .

( ) . .

= =
= = × =

= − = × ×

100 0 4

100 0 4 40

1 100 0 4 0 6

 

σ == 4 90.

	 A1

	 	 	 A1

	 ii.	 	Require	 Pr( ) .X ≥ =30 0 9852.	Using	CAS	the	answer	is	directly	obtained	from	binomialcdf:

	 	 binomCdf(100,	0.4,	30,	100)	 A1

b.	 i.	 	For	the	eighth	phone	call	to	result	in	the	first	booking	from	phone	enquiries	on	that	day	we	need	to	have	no	
bookings	from	the	first	seven	phone	calls,	then	a	booking	on	the	eighth	call.

	 	 Thus	required	probability	= − × −( ) ( )1 17 7k k k k or .	 A1

	 ii.	 Pr(eighth	phone	call	results	in	fourth	booking)	=	k	× Pr(three	bookings	from	seven	phone	calls)	 M1

	 	 k C k k k k× − = −7
3

3 4 4 41 35 1( ) ( ) 	 A1
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	 iii.	 We	need	to	locate	the	maximum	of	the	function	 f k k k( ) ( )= −35 14 4

	 	 A	graph	sketch	from	a	CAS	shows	the	maximum	turning	point	at	(0.5,	0.1367)	 M1

	 	

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

(0.5, 0.1367)

k

f(k)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

	 	 The	maximum	probability	occurs	when	k	=	0.5	and	equals	0.1367.	 A1

c.	 Pr	(no	booking)	=	0.42

	 Thus	 0 4 1 0 5 1 0 1 1 0 422 3. ( ) . ( ) . ( ) .− + − + − =k k k .	 M1

	 Solving	on	CAS	and	noting	 0 1 0 72< < =k k, . 	 A1

d.	 Pr(	email	via	internet	booking	agency	|	a	booking	is	made)	=	
Pr(internet )

Pr( )

booking

booking

∩

	 Thus	 0 25
0 5

0 1 0 4 0 5

2

3 2
.

.

. . .
=

+ +
k

k k k
.		 M1

	 Solving	on	CAS	and	noting	 0 1 0 27< < =k k, . .	 A1

e.	 i.	 We	require	3	transitions	to	go	from	Sunday	to	Wednesday,	i.e.	T 3 1

0
×










.

	 	 Thus 

3

5

1

3
2

5

2

3

1

0

523

1125
602

1125

3






























 =























.	 M1

	 	 So	the	required	probability	of	dining	in	the	restaurant	on	Wednesday	night	equals	
523

1125
.		 A1

	 ii.	 Consider	Tn for	large	n.	For	example	

3

5

1

3
2

5

2

3

1

0

0 4545

0 5454

50






























 =












.

.
.

	 	 The	percentage	of	nights	the	hotel	can	assume	guests	will	dine	in	the	hotel	restaurant	is	45%.	 A1
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f.	 Define	Y	as	the	random	variable	“weight	of	lobster”.

	 Then	Y N∼ ( , )µ σ2 .

	 	 We	are	given	that	 Pr( ) .Y m− ≤ =µ 0 25

	 	 Pr( ) .− ≤ − ≤ =m Y mµ 0 25 	 A1

	 	 Applying	the	Z	transformation,	 Z
Y m

Z
m

=
−

− ≤ ≤ =
µ
σ σ σ

 gives Pr( ) .0 25

	 	 Thus	 Pr( ) .Z
m

≤− =
σ

0 375 .

	 	 − = =− =
m

invnorm
m

σ σ
( . ) . .0 375 0 3186 0 3186 Thus 	 M1

	 	 We	require	 Pr( )Y m− ≤µ 3 .	

	 	 This	is	equivalent	to	finding	 Pr( )Z
m

≤
3

σ
,	i.e.	Pr(Z)	≤	3	×	0.3186.

	 	 = ≤ =Pr( . ) .Z 0 9559 0 8304 		 A1

Question 4 (10 marks)

a.	
700

600

500

400

300

200

100

0

–100

–200

Rout

Rin

Rin – Rout 

121110987654321 13 14 15 16 17 18 19 t

	 	 	 	 																																																																Shape of graph A1
	 																																										                                                               Critical points correctly located	 A1

b.	 Using	the	graph	and	CAS,	we	require

	 y R Rin out= − 	to	be	above	axis.	Intersection	points	occur	at	t	=	6.15095,	13.1152,
so	between	t	=	6.151	and	13.115	 A1

c.	 The	tank	contains	the	initial	quantity	plus	an	increase	or	decrease	according	to

	 1200 00 0 00
0

15

+ − = + =∫ ( ) . .R R dtin out 12 8 4 71 2 4 71 .	 M1
	
So	2005	litres.		 A1
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d.	 The	inflow	rate	and	outflow	rate	are	equal	at	t	=	6.15095,	13.1152

	 At	t	=	6.15095,

	 volume	=	 . .12000 1200 498 97 701 024
0

6 15095
+ − = − =∫ ( )

.
R R dtin out  .	 A1

	 At	t =	13.1152,

	 volume	=	 .1200 1200 984 516 2184.516
0

13 1152
+ − = + =∫ ( )

.
R R dtin out  .

	 At	t	=	18

	 volume	=	 . .1200 1200 655 2641 1855 2639
0

18
+ − = + =∫ ( )R R dtin out  

	 Hence	the	absolute	minimum	quantity	of	liquid	occurs	at	t	=	6.15.	 A1

Using appropriate integrals to compute volume           M1

e.	 At	t	=	18,	there	is	a	volume	of	1855.26	litres	remaining	in	the	tank.

	 Thus	 250sin4

18 6
1855 26

t
dt

T 




 =∫ . .	 A1

	 Solving	on	CAS	gives	T = 42 72. .

	 So	tank	is	empty	after	42	hours	43	minutes.	 A1


