

NAME: _____

VCE MATHEMATICAL METHODS (CAS)

Practice written examination 1

Reading time: 15 minutes

Writing time: 1 hour

QUESTION AND ANSWER BOOK

Structure of book

Number of	Number of questions	Number of
questions	to be answered	marks
10	10	40

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers.
- Students are **not** permitted to bring into the examination room: notes of any kind, a calculator of any type, blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 10 pages.
- Formula booklet PROVIDED BY YOUR TEACHER.
- Working space is provided throughout the book.

Instructions

- All written responses must be in English.
- Write your student name in the space provided above on this page.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Instructions

Answer **all** questions in the spaces provided.

In all questions where a numerical answer is required an exact value must be given unless otherwise specified.

In questions where more than one mark is available, appropriate working **must** be shown. Unless otherwise indicated, the diagrams in this book are **not** drawn to scale.

Question 1

A function $f(x) = \sqrt{4 - x^2}$ undergoes a reflection in the x-axis and then translation by 2 units in the negative x-direction. Determine the equation of the transformed function, g(x).

Question 2

a) If $y = (x + 2x^4)^2$ then find $\frac{dy}{dx}$.

1 mark

2 marks

b) If $g(x) = \frac{\cos(2x)}{x}$ then find $g'\left(\frac{\pi}{2}\right)$.

Find an antiderivative of $\frac{3}{(3-3x)^2}$ with respect to x.	
3	2 mark
Determine the average value of the function $h(x) = 4x - \frac{x^3}{4}$ between x = 0 and x = 4.	
	3 mark
uestion 4	Jinark
blve the equation $e^x + \frac{25}{e^x} = 10$ for x.	
e	

The equation for the function g is $g(x) = \frac{10}{(2x^2+5)}$.

a) Find an equation for the inverse of *g*.

2 marks

b) Determine a maximal domain for g(x) that will make the inverse also a function.

Consider the function $h: R \to R, h(x) = 2 - 2 \left| sin\left(\frac{\pi x}{2}\right) \right|$

a) State the range of h(x).

b) Determine the period of h(x).

c) Solve h(x) = 0 for all $x \in [-2, 2]$.

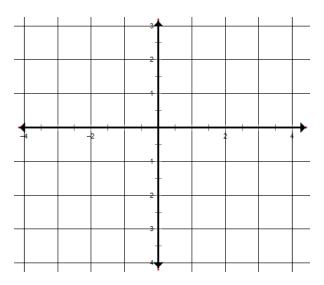
1 mark

1 mark

1 mark

d) For $0 \le x \le 2 h(x)$ is equivalent to $2 - 2sin\left(\frac{\pi x}{2}\right)$. Use this information and calculus to determine the area bounded by h(x), the x-axis, x = -2 and x = 2.

a) Sketch the graph of $f(x) = log_e((x-1)^2)$ on the axes provided.



3 marks

1 mark

b) Differentiate $f(x) = log_e((x-1)^2)$.

c) Determine the equation of the normal through the point where x = 2.

QATs VCE Mathematical Methods (CAS) Practice Examination 1, Units 3 and 4

Question 8

A weighted six sided die has a distribution as given:

Х	1	2	3	4	5	6
Pr(X = x)	k	k - 0.2	0.1	0.2	0.1	2k

a) Determine the value of k in the distribution.

b) Find the mean of the distribution.

1 mark

2 marks

c) What is the probability that the die will land face up on an even number?

1 mark

a) A binomial distribution has a mean of 20 and a variance of 12 Determine the values of *n* and *p*.

2 marks

b) Hence determine the value of Pr(X = 0). Leave your answer in exact form.

1 mark

A continuous random variable is defined by the hybrid function

$$p(x) = \begin{cases} \frac{x}{16} & 0 \le x \le 4\\ \frac{(x-1)(7-x)}{36} & 4 < x \le 7 \end{cases}$$

a) What is the $Pr(X \le 4)$?

2 marks

b) Hence or otherwise determine the value of the 25th percentile.

2 marks

END OF QUESTION AND ANSWER BOOKLET

Solution Pathway

Question 1

Reflection in the x-axis gives $-\sqrt{4-x^2}$	(1 mark)
Translation in the negative x-axis gives $-\sqrt{4-(x+2)^2}$	
So $g(x) = -\sqrt{4 - (x+2)^2}$	(1 mark)

Question 2

a)

Use chain rule. Let	$u = x + 2x^4$ and then $y = u^2$	
	$\frac{du}{dx} = 1 + 8x^3$ and $\frac{dy}{du} = 2u$	
Then $\frac{dy}{dx} = 2(x + 2x^4)$	$\times (1 + 8x^3)$	(1 mark)

b)

Use quotient rule: Let $u = \cos(2x)$ and v = x

$$\frac{du}{dx} = -2\sin(2x) \text{ and } \frac{dv}{dx} = 1$$
Then $\frac{dy}{dx} = \frac{x(-2\sin(2x)) - \cos(2x)}{x^2}$ (1 mark)
$$\therefore g'\left(\frac{\pi}{2}\right) = \frac{1}{\frac{\pi^2}{4}} = \frac{4}{\pi^2}$$
 (1 mark)

Question 3

a)

$$\int \frac{3}{(3-3x)^2} dx = 3 \int (3-3x)^{-2} dx$$
$$= 3 \left(\frac{(3-3x)^{-2+1}}{-3x-1} \right) + c \qquad (1 \text{ M})$$
$$= (3-3x)^{-1} + c$$
$$= \frac{1}{3-3x} + c \qquad (1 \text{ A})$$

b)

$\frac{1}{4-0}\int_0^4 4x - \frac{x^3}{4} dx = \frac{1}{4} \left[\frac{4x^2}{2} - \frac{x^4}{16} \right]_0^4$	(1 M)
$=\frac{1}{4}\left(\frac{4\times16}{2}-\frac{16\times16}{16}-0\right)$	(1 M)
$=\frac{1}{4}(4 \times 8 - 16)$	
$=\frac{1}{4} \times 16 = 4$	(1 A)

Question 4

Multiply through by e^x :	$e^{2x} + 25 = 10e^x$	
	$e^{2x} - 10e^x + 25 = 0$	(1 M)
Let $A = e^x$	$A^2 - 10A + 25 = 0$	
Solve for A	$(A-5)^2 = 0$	
	(A - 5) = 0	
	A = 5	(1 M)
Now solve for x	$e^x = 5$	
	$x = \log_e(5)$	(1 A)

Question 5

a)

	Let $g(x) = y$	
	$y = \frac{10}{(2x^2+5)}.$	
Swap x and y	$x = \frac{10}{(2y^2 + 5)}.$	(1 mark)
Rearrange	$2y^2 + 5 = \frac{10}{x}$	
	$y^2 = \frac{5}{x} - 2.5$	
	$y = \pm \sqrt{\frac{5}{x} - \frac{5}{2}}$	(1 mark)

b)

Domain restrictions must make the original function 1 to 1. Therefore it is necessary to find turning points of the original function.

	$g'(x) = \frac{-40x}{(2x^2+5)^2}$	(1 mark)
Let $g'(x) = 0$	$0 = \frac{-40x}{(2x^2+5)^2}$	
Hence	0 = -40x	
and	x = 0	(1 mark)
So maximal domain is	$0 \le x < \infty$ or $-\infty < x \le 0$	(1 mark for either)

a)

All sine functions have a range of $-1 \le x \le 1$		
The modulus converts this to a range $0 \le x \le 1$		
2-2=0 and $2-0=2$.		
Hence $\operatorname{Ran} = [0, 2]$	(1 mark)	

b)

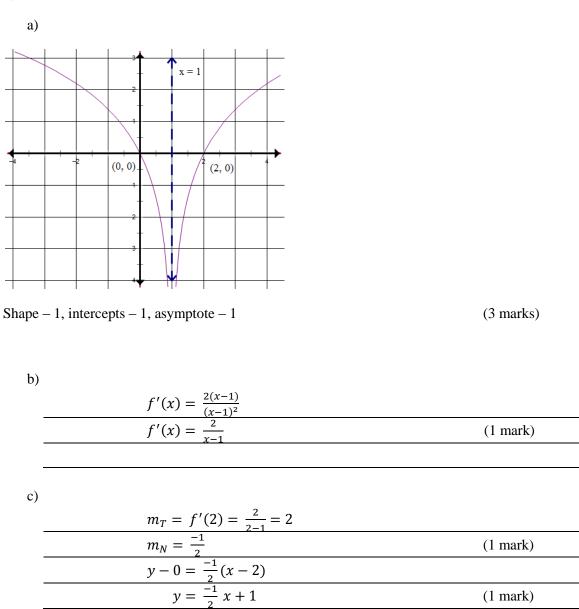
The $sin\left(\frac{\pi x}{2}\right)$ component of the function has a period of $2\pi \times \frac{2}{\pi} = 4$	
The modulus converts this to half the original period so $Period = 2$. (1 mark)	

c)

$0 = 2 - 2 \left \sin\left(\frac{\pi x}{2}\right) \right $	
$2 = 2 \left \sin\left(\frac{\pi x}{2}\right) \right $	
$1 = \left \sin\left(\frac{\pi x}{2}\right) \right $	
$\pm 1 = \sin\left(\frac{\pi x}{2}\right)$	
$\pm \frac{\pi}{2} = \frac{\pi x}{2}$	
$x = \pm 1$	(1 mark)

d)

$$\int_{-2}^{2} h(x)dx = 2\int_{0}^{2} 2 - 2\sin\left(\frac{\pi x}{2}\right)dx$$
$$= 2\left[\left(2x + \frac{4}{\pi}\cos\left(\frac{\pi x}{2}\right)\right]_{0}^{2} \qquad (1 \text{ mark})$$
$$= 2\left[\left(4 + \frac{4}{\pi}\cos(\pi) - \left(0 + \frac{4}{\pi}\cos(0)\right)\right]$$
$$= 2\left[\left(4 - \frac{4}{\pi} - \frac{4}{\pi}\right]\right]$$
$$= 8 - \frac{16}{\pi} \text{ units} \qquad (1 \text{ mark})$$



Question 8

a)
-	1

Sum = 4k + 0.21 = 4k + 0.2(1 mark) 4k = 0.8k = 0.2(1 mark)

Ser3CASE1

(1 mark)

b)	
0.2 + 0 + 0.3 + 0.8 + 0.5 + 2.4 = 4.2	(1 mark)
c)	
$0 + 0.2 + 2 \times 0.2 = 0.6$	(1 mark)

a)	
np = 20	
npq = 12	
$q = \frac{12}{20}$	
Therefore $p = 1 - \frac{12}{20} = \frac{8}{20}$	(1 mark)
And $n = \frac{20 \times 20}{8} = 50$	(1 mark)

b)

_

$$\Pr(X=0) = {}^{50}C_0 \left(\frac{2}{5}\right)^0 \left(\frac{3}{5}\right)^{50} = 1 \times 1 \times \left(\frac{3}{5}\right)^{50} = \left(\frac{3}{5}\right)^{50}$$
(1 mark)

Question 10

a)

b)

$$\frac{\int_{0}^{4} \frac{x}{16} dx = \left[\frac{x^{2}}{32}\right]_{0}^{4} \qquad (1 \text{ mark})}{= \frac{16}{32} - 0 = \frac{1}{2}} \qquad (1 \text{ mark})$$

$$\frac{\frac{1}{4} = \int_{0}^{q} \frac{x}{16} dx = \left[\frac{x^{2}}{32}\right]_{0}^{q} \qquad (1 \text{ mark})}{\frac{1}{4} = \frac{q^{2}}{32}}, \quad \text{Hence, } q^{2} = 8, \text{ so } q = \sqrt{8} \qquad (1 \text{ mark})$$

END OF SOLUTIONS